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Abstract

We define Stock Active Share (SAS) as the degree to which a stock in a benchmark
index is actively weighted by mutual funds relative to its index weight. We analyze the risk-
return characteristics of portfolios ranked by SAS values. The top quantile portfolio delivers
significant monthly risk-adjusted returns, highlighting mutual fund managers’ capital allocation
proficiency. However, due to the delayed disclosure of fund holdings, SAS is unobservable
in real-time, making the strategy unfeasible for typical investors. To address this, we apply
machine learning models to historical fund holdings and stock characteristics to predict future
SAS and sort portfolios accordingly. These models demonstrate substantial out-of-sample
accuracy, and the feasible top quantile portfolio consistently outperforms the benchmark across
risk-adjusted measures. Our findings illustrate the enduring value of fund managers’ stock-
picking skills, challenging the view that technological advancements diminish their importance.
Furthermore, the feasible strategy outperforms traditional analyst recommendations and aligns

with sustainability goals by favoring stocks with lower carbon intensity.
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1 Introduction

The digital transformation of modern economies has dramatically improved access to information
and financial markets. Ordinary investors now have easy access to trading platforms, often through
smartphones, allowing them to manage their portfolios (Eaton et al.; 2022; Bryzgalova et al.; 2023).
This increased accessibility, however, raises questions about the role of professional investors who
manage assets on behalf of others. Specifically, it remains unclear whether mutual funds have a
reliable source of information that allows them to allocate capital effectively to firms capable of
generating positive risk-adjusted returns. Additionally, a practical question arises: can investors
learn and profit from the skills of mutual fund managers by analyzing the history of mutual fund
holdings? This paper provides evidence supporting a positive answer to this question.

We consider Stock Active Share (SAS) to measure the degree to which a stock belonging to
a standard benchmark index is actively weighted by mutual funds compared to its weight in the
benchmark index, and we analyze the risk-return characteristics of portfolios formed by ranking
stocks according to their active shares among mutual funds. SAS for a given stock in a benchmark
index, calculated as the sum of the absolute differences between the weights of the stock in various
mutual funds and its weight in the benchmark index, is interpreted as a measure of managers’
conviction about the stock’s value. We focus on two benchmark indexes: the MidCap S&P400 and
the BigCap S&P500. We show that knowing ex-ante the information that mutual funds reveal ex-
post about their portfolio composition, like an Oracle, allows us to design a SAS-based investment
strategy that consistently outperforms the market index. This strategy, termed our “SAS-Oracle
strategy,” which uses quarterly rebalancing to sort stocks into portfolios based on SAS values and
buys the top quantile portfolio, generates monthly risk-adjusted returns ranging across benchmark
indexes from 0.67% to 0.92% in tercile portfolios, from 0.73% to 1.15% in quintile portfolios, and
from 0.74% to 1.41% in decile portfolios.

Although the findings suggest that mutual fund managers can efficiently allocate capital and
surpass passive investors, their skills do not directly benefit mutual funds mimicking investors

due to the delayed release of information on mutual fund holdings. When this information is



available, it’s too late for mutual funds mimicking investors to use it to implement the SAS-Oracle
strategy effectively. We employ machine learning models to anticipate SAS value to address this
limitation. We train four machine learning models—elastic net, random forest, gradient boosting,
and deep neural network—and utilize ordinary least squares (OLS) regression on historical data
encompassing thousands of month-stock observations and hundreds of stock characteristics, aiming
to predict mutual fund managers’ later-released conviction about stock value. This predictive
approach allows us to construct our investment portfolios proactively.

We initially investigate the capacity of machine learning models to predict the SAS value of
stocks, our primary measure of interest. Our analysis reveals a notably high out-of-sample Pearson
correlation between the actual SAS values and their predictions by the machine learning models.
For instance, we see a 66% correlation for deep neural network (DNN) and 70% for random forest
(RF) in BigCap stocks, and 46% for DNN and 44% for RF in MidCap stocks, with the models being
updated every three months. Similar levels of accuracy are seen in other goodness-of-fit measures,
such as out-of-sample R-squared values. These metrics are crucial, as higher out-of-sample fits
indicate that sorting stocks based on their SAS predictions by the machine learning models can
effectively proxy portfolio sorts based on actual but unobservable SAS values.

Next, we demonstrate the efficacy of a machine learning-based investment strategy that uses
quarterly rebalancing to sort stocks into portfolios based on predicted SAS values, explicitly
targeting the top quantile portfolio. This strategy termed our “SAS-feasible strategy,” consistently
outperforms the benchmark index across various measures of risk-adjusted returns. For BigCap
stocks, the monthly risk-adjusted returns achieved by the DNN and RF models in the SAS-feasible
top quintile portfolio are 0.35% and 0.30%, respectively. These figures represent 86.93% and
74.37% of the risk-adjusted return in the SAS-Oracle top quintile portfolio during the same period.
In the MidCap category, the DNN and RF models deliver monthly risk-adjusted returns of 0.62% and
0.51%, respectively, corresponding to 84.27% and 69.90% of the SAS-Oracle top quintile portfolio
counterparts. For comparison, the two benchmark indexes record a zero monthly risk-adjusted

return during the same period.



Our strategy allows us to create relatively concentrated yet diversified portfolios anytime. We
observe that the total risk of the SAS-feasible strategy is comparable to, if not lower than, that of the
benchmark index while offering higher returns. Additionally, our portfolio strategy exhibits less
negative skewness and lower kurtosis than the benchmark indexes, indicating a lower probability
of adverse outcomes for active investors than those passively holding the benchmark index. Our
findings are robust across different quantile-based portfolio formations (tercile, quintile, or decile),
allowing us to assess the impact on diversification by varying the number of stocks in our portfolio.
Surprisingly, the portfolio performance remains very stable, making it suitable for modest individual
investors and more prominent institutional investors seeking to hold more stocks.

This novel finding suggests that investors can enhance their portfolios by learning from mutual
fund managers’ historical holdings, which reflect skilled decision-making. A fund’s portfolio results
from an optimization process where a manager uses various stock characteristics and market signals
to allocate capital effectively. Skilled managers consistently select valuable stocks, deviating from
the market index to achieve higher returns. If mutual fund performance were purely driven by luck,
a deterministic strategy based on fund holdings wouldn’t consistently outperform the market. This
paper demonstrates that fund managers’ collective skills provide valuable information, enabling
profitable asset allocation strategies that generate positive risk-adjusted returns for investors.

This article connects to several strands of literature. The debate on mutual funds’ ability to select
well-performing stocks and time the market remains unsettled. Early research found little evidence
of manager skill, leading to skepticism about the value of active management and a preference for
passive investing (Carhart; 1997; Fama and French; 2010). The conventional view suggests that
most funds underperform after fees, with limited persistence in performance and few managers
showing skill beyond costs (Cremers and Petajisto; 2009). However, recent studies using different
measures, such as active shares (Daniel et al.; 1997; Cremers and Petajisto; 2009) and funds’
inflows (Berk and van Binsbergen; 2015), challenge this view, finding that some mutual funds can
outperform the market even after fees, and that top-performing funds often exhibit persistence.

Our paper builds on Kacperczyk et al. (2005) and Cremers and Petajisto (2009) who pre-



dict mutual fund performance through their aggregate deviation from the fund-specific benchmark
weights. Jones and Mo (2020) investigate the out-of-sample performance of mutual fund predictors
and discover that related publications rendered mutual fund active share and industry concentration
ineffective in predicting mutual fund performance. They explain this through a learning channel,
meaning investors or mutual fund managers learn from academic literature and change their in-
vestments. We differ from them in two ways: first, we use stock deviations relative to standard
benchmark indices rather than fund-specific benchmarks; second, we aggregate deviations across
funds for each stock rather than across stocks in a fund. This approach departs from the original ac-
tive share definition, and we argue it provides novel market information. Empirical results support
this, as portfolios based on our SAS measure consistently outperform benchmark indices.

Our approach follows Jiang et al. (2014), who measure mutual funds’ deviations from bench-
marks by averaging the simple (not absolute) differences between a stock’s weight in mutual funds
and its weight in the benchmark index. Unlike their focus on stocks held by mutual funds or in
the fund’s specific benchmark, we concentrate on stocks within a standard benchmark. Like them,
we calculate the Net Stock Active Share (NSAS) as the sum of the simple differences between a
stock’s weight in mutual funds and its benchmark. Our findings reveal that positive differences
are significantly larger than negative ones, and strong positive correlations between simple and
absolute differences: 0.89 for the S&P500 and 0.90 for the S&P400. Thus, both NSAS and SAS
should yield similar results for stock selection.

Jiang et al. (2014) show that decile portfolios based on average deviations generate alpha, sug-
gesting mutual fund managers possess stock-picking skills. We confirm this by demonstrating that
our SAS-Oracle strategy, which selects top quantile stocks by SAS values, outperforms the market
index. Unlike previous studies, we address the impracticality of delayed mutual fund holdings’
disclosure by using machine-learning methods, historical fund holdings, stock characteristics, and
macroeconomic data to build tradable portfolios that consistently outperform market indices.

Additionally', Antén et al. (2008, 2021) developed a “best ideas” portfolio for mutual fund

"Wermers et al. (2012), Agarwal et al. (2013), and Yan and Zhang (2007) find positive return predictability from the
portfolio holdings of actively managed mutual funds, hedge funds, and short-term institutional investors, respectively.



managers, but our approach differs. Their method focuses on maximizing the Sharpe ratio for
individual managers’ top ideas, while our strategy seeks to identify the best ideas across managers,
resulting in a more concentrated portfolio. Despite this, our approach remains flexible, allowing for
adjustments in the number of stocks included. Our portfolio demonstrates high active share with
low tracking error, consistent with diversified stock selection as per Cremers and Petajisto (2009).

The rise of artificial intelligence in finance has spurred numerous studies on machine learning
applications in investment (Kelly and Xiu; 2023). For example, Gu et al. (2020) employ machine
learning algorithms with multiple predictors to construct stock portfolios that outperform the
market. Similarly, we utilize machine learning and stock characteristics to develop a profitable
investment strategy. However, we further enhance this approach by incorporating insights from fund
manager expertise to achieve this objective. Li and Rossi (2021) apply machine learning models
and mutual fund holdings’ characteristics to predict high-performing mutual funds. Kaniel et al.
(2023) integrate deep learning with mutual fund characteristics, holdings, and investor sentiment
to forecast mutual fund performance, concluding that stock characteristics are not essential for
selecting top-performing funds. DeMiguel et al. (2023) supported this view, showing that machine
learning and mutual fund characteristics can be used to construct profitable mutual fund portfolios.

In contrast, our objective is not to identify the best-performing mutual funds but to predict
the best-performing stocks within benchmark indices using the aggregate information from mutual
funds. Our contribution lies in leveraging machine learning and stock characteristics to predict
mutual fund managers’ collective stock valuations based on their deviations from a standard bench-
mark. Unlike traditional approaches focusing on stock returns, we use mutual funds’ aggregate
deviations as the target variable in our models. This allows us to capture return maximization and
broader objectives like managing drawdown or value-at-risk, offering more profound insights into
mutual funds’ investment strategies.

We extend our performance comparison beyond standard stock indices, including comparing
SAS strategies with those based on analyst recommendations. Barber et al. (2001) show that buying

stocks with favorable consensus recommendations is profitable. Our results indicate a weak but



positive correlation between analyst recommendations and SAS measures. While both strategies
outperform benchmark indices, the SAS-based strategies consistently deliver better risk-adjusted
returns, suggesting that machine learning predictions based on mutual fund manager behavior
provide more effective investment guidance than analyst recommendations.”

Finally, we explore the relationship between fund manager stock preferences as reflected in
SAS measures and carbon emissions level and intensity. On the one hand, our findings indicate
a significant negative correlation between a stock’s carbon emissions intensity and its SAS value,
meaning that stocks favored by fund managers for outperforming benchmark indices tend to have
lower carbon emissions intensity or, equivalently, to be more carbon efficient. This aligns the
SAS strategy with ESG criteria, demonstrating that achieving both strong financial returns and
sustainable investment goals is possible. On the other hand, we find a positive relationship between
carbon emissions level and SAS value, which shows that a stock’s higher level of carbon emissions
predicts a higher expected return for investors, suggesting that higher SAS stocks may earn a carbon
premium for their exposure to climate-related risks (Bolton and Kacperczyk; 2021, 2023).

The remainder of the paper is organized as follows: Section 2 introduces the stock active
share, our measure of managers’ conviction regarding stock value, and provides details on our
data. Section 3 explores the composition and performance of the SAS-Oracle portfolios. Section
4 focuses on the machine learning implementation and performance for predicting SAS measures.
Section 5 presents and evaluates the main results, focusing on the financial performance of the
machine learning-based investment strategy. Section 6 explores the relationship between the SAS-
feasible strategy and carbon emissions. Section 7 concludes the paper. An External Appendix

offers additional results on portfolio rebalancing at a monthly frequency.

ZWe show in the internet appendix that sorting stocks on lagged one-month, two-month, or three-month SAS values,
which are readily available, renders the investment strategy ineffective. More specifically, the performance achieved is
not better than analyst recommendations and worse than investment strategies based on machine learning.



2 Data, Measures, and Descriptive Statistics

This section explores publicly available data on U.S. mutual fund holdings. It introduces and
formally defines the stock active share, a crucial measure upon which all subsequent empirical
analyses are based. Additionally, relevant summary statistics for stock active share are provided

and discussed, serving as a foundation for the empirical investigation that follows.

2.1 Data on Mutual Fund Holdings of Stocks

We collect data from multiple sources, primarily the CRSP Survivor-Bias-Free U.S. Mutual Fund
Database, covering the period from August 2007 to December 2023.° We begin by selecting actively
managed U.S. equity mutual funds using the Fund Summary table, following the methodology of
Kacperczyk et al. (2006). Funds are chosen based on their Investment Objective Codes.* Index
funds are identified and excluded by their names,” and only funds with at least two-thirds of their
total net assets (TNA) in common stocks are retained.

We obtain the CRSP holdings file, which provides a list of equities held by open-ended funds,
along with their percentage of total net assets. The historical list of benchmark index constituents
is sourced from Refinitiv/Datastream, along with the market capitalization of each constituent,
enabling us to calculate the portfolio weights of the benchmark index. The weight of each stock
in the benchmark index is determined by dividing its market value by the total market value of the
index. These weights are then used to calculate the deviation of each stock, in the benchmark index,

from the corresponding holdings reported by each mutual fund. These deviations are subsequently

3The SEC’s Rule I1C-26372, implemented in May 2004, requires mutual funds to disclose their end-of-quarter
holdings four times a year within 60 days. Prior to this, disclosure was optional and limited to a few funds. Before
August 2007, our dataset includes a small number of funds (fewer than 10) that disclosed holdings regularly.

“We select funds with the following Lipper classification codes: EIEI, G, LCCE, LCGE, LCVE, MCCE, MCGE,
MCVE, MLCE, MLGE, MLVE, SCCE, SCGE, or SCVE. If a fund lacks a Lipper code, we use Strategic Insight
objectives (AGG, GMC, GRI, GRO, ING, or SCG). If neither the Strategic Insight nor Lipper objective is available,
we rely on the Wiesenberger Fund Type Code, selecting funds with objectives G, G-I, AGG, GCI, GRI, GRO, LTG,
MCG, or SCG. If none of these objectives is available, we retain a fund if it follows a CS policy (i.e., primarily holds
common stocks).

SWe exclude funds with any of the following text strings in their name: “INDEX”, “Index”, ”IDX”, “1dx”, ”S&P”,
”s&p”, “Fixed”, "FIXED”, "TAX"”, ’tax”, ”Tax”, "CONVERTIBLE”, ”Convertible”, ”annuity”, ’"ANNUITY”, "ANN",
”ann”, ”VAR”, ”Var”, ”"CONV”, ”Conv”.



aggregated across mutual funds to compute the stock active shares. Benchmark index returns are
also sourced from Refinitiv/Datastream.

Additionally, we acquire data on the Fama-French five factors (market, size, value, investment,
and profitability), as well as the momentum factor, from Prof. Kenneth French’s website, along
with the risk-free interest rate.

Figure | provides a comprehensive view of the composition of our dataset over time. Panel I
illustrates the evolution of the number of stocks held by mutual funds across the S&P500 (Large-
Cap) and S&P400 (Mid-Cap) indices. In the S&P500 (Panel 1.A), mutual funds consistently
increased their holdings of large-cap stocks, starting with above 350 stocks in the early 2000s,
despite some notable fluctuations. By the early 2020s, mutual funds held over 450 stocks from the
S&P500, indicating stable and substantial exposure to large-cap equities. In the S&P400 (Panel
[.B), holdings followed a similar upward trajectory, though fluctuations in the early 2000s were
larger, and recent years saw a slight decline, suggesting a reduced emphasis on mid-cap stocks in
mutual fund portfolios. These trends indicate that mutual funds have progressively expanded their
exposure across all two indices, with the most consistent growth observed in the S&P500, while
mid-cap stocks exhibited greater variability in mutual fund holdings.

Panel I illustrates the percentage of index capitalization for stocks held by mutual funds in the
S&P500 and S&P400 indices. In Panel II.A, S&P500 stocks held by mutual funds consistently
represent approximately 80% of the index capitalization, with notable stability after 2010. In
Panel I1.B, the percentage of index capitalization for S&P400 stocks held by mutual funds exhibits
more volatility in the beginning of the sample period, but stabilized around 75% in 2010, before
increasing steadily to approach 95% by the end of the sample period. These patterns suggest that
mutual funds exhibit strong and stable coverage and exposure to large-cap stocks, while showing
increasing interest and investment in midcap stocks, particularly after 2010.

Panel III of Figure 1 illustrates the number of mutual funds displaying their holdings for

stocks within the S&P500 and S&P400 indices over time.® In Panel III.A, the number of funds

SWe smoothed the data by calculating the three-month rolling average. Otherwise, the data would display high
fluctuations and seasonality, with the number of mutual funds sharply increasing at the end of quarters.



disclosing their holdings of S&P500 stocks increases sharply from 2001 to 2005, likely due to the
implementation of the SEC’s Rule IC-26372 on mutual fund holding disclosure, peaking at over
1,250 funds, and remains relatively stable thereafter. A similar trend is observed in Panel I11.B
for the S&P400 index, where the number of funds disclosing their holdings also stabilizes above
1,200 funds after a period of rapid growth. A sharp decline towards the end of the sample period
(2023) is visible across the S&P500 and S&P400 indices, possibly indicating consolidation within

the mutual fund industry or changes in disclosure practices.

2.2 Stock Active Share: Motivation, Definition, and Summary Statistics
2.2.1 Motivating and Defining Stock Active Share

Active mutual funds outperform their benchmark index by selecting winning stocks or timing the
market through increased exposure to specific market factors, such as overweighting particular
sectors (Cremers and Petajisto; 2009; Petajisto; 2013). These funds tend to have a higher active
share, indicating substantial deviations from the benchmark regarding stock weightings. In contrast,
closet index funds display a lower active share, closely tracking their benchmark. Since a sufficiently
high active share correlates with mutual fund outperformance, the stocks contributing significantly
to active share may also drive this outperformance. Therefore, a concentrated portfolio of such
stocks will likely outperform the benchmark index.

However, the original active share measure has faced several critiques. Jones and Mo (2020)
find that, after the academic publications emphasizing active share’s effectiveness as a performance
predictor, the measure has become noisier and no longer reliably predicts performance. Our
measure captures a different view than the original active share definition, making it distinct and
potentially less susceptible to the previously identified market learning effects.’

We construct a SAS portfolio comprising stocks that contribute the most to the aggregate active

share of mutual funds within a standard benchmark index. Each month, for every stock in the

"If this is not the case, the data will reveal it, especially as our sample, beginning in 2007, broadly covers the period
following the 2009 publication.



benchmark, we calculate its active share by summing the absolute differences between its weight
in each mutual fund portfolio and its weight in the benchmark. Importantly, we measure mutual
fund deviations not from specific benchmarks but from a common, standardized benchmark index.
The SAS portfolio is then formed based on these stock-level active share measures.

Formally, let w;, be the weight of stock ¢ in the benchmark index at time ¢, and w; ;, be the
weight of stock 7 in mutual fund j’s portfolio at time ¢. Let N;; represent the number of mutual
funds that have disclosed their holdings at time ¢ in stock . We define the following stock-level

measures of active management among mutual funds:

* The Stock Active Share (SAS) aggregates the Absolute Deviation From Benchmark (ADFB):

Ni ¢
SAS;; =Y ADFB;;, where ADFB;;, = |w;;, — wi|. (1)

j=1

* The Net Stock Active Share (NSAS) aggregates the Deviation From Benchmark (DFB):

Ni
NSAS;; =) DFB;;; where DFB;;, = (wij; —wis) . (2)

j=1
We use a summation of ADFB or DFB instead of an average because we aim for our measure to
capture the broad market consensus.® Using an average (e.g., Jiang et al.; 2014) would, for instance,
treat a stock held by a single mutual fund with a specific deviation from the benchmark the same
as a stock held similarly by all mutual funds. The latter, however, represents a market consensus,
while the former does not. Using the sum, we can clearly differentiate between these two cases,

with the stock aligned with the market consensus exhibiting a higher SAS or NSAS value.

2.2.2 Descriptive Statistics on Deviation from Benchmark

Table 1 provides a detailed analysis of mutual fund portfolio weights compared to benchmark

indices over the period from August 2007 to December 2023. The table is organized into two

80ne could consider weighting the deviations by the fund’s assets. However, this would give more importance to
funds with greater total net assets (TNA), leading to an allocation strategy that aligns more closely with their views.
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panels, corresponding to the S&P500 (Panel I) and S&P400 (Panel IT). For each benchmark index,
sub-panels present summary statistics as follows: sub-panel A displays the weight of a stock
disclosed by the mutual fund in its portfolio, while sub-panel B shows the weight of the stock if it
were to match its weight in the benchmark index, referred to as the benchmark-matching weight.
Sub-panel C reports the stock deviation from the benchmark (DFB), calculated as the difference
between the two preceding measures, and sub-panel D provides the absolute deviation from the
benchmark (ADFB), which represents the absolute value of the DFB.

The table provides summary statistics for a stock in mutual fund portfolios, aggregated across all
funds, all stocks, and all time periods. Each statistic characterizes the typical allocation percentage
that mutual funds have invested in a stock, averaged over time and across different funds. This
analysis helps to understand the degree of deviation from the benchmark index and the extent of
active management by mutual funds.

Across all two indices, mutual funds exhibit a clear tendency to overweight specific stocks
compared to the benchmark, particularly in the case of BigCap stocks. On average, mutual funds
allocate 0.85% to a typical large-cap stock (with a standard deviation of 1.03%), significantly
higher than the benchmark-matching allocation of 0.31% (with a standard deviation of 0.51%). For
BigCap stocks, the average ADFB is 0.63% compared to 0.53% for the DFB, with approximately
73.66% of DFBs being positive. In contrast, fewer than half of the deviations for MidCap stocks are
positive, indicating that mutual funds tend to underweight these stocks relative to the benchmark.
However, the magnitude of positive deviations consistently exceeds that of negative deviations
across all indices, reflecting a preference for concentrated positions in certain stocks. The strong
correlations (around 0.90) between DFB and ADFB for all indices indicate that absolute deviations
are closely aligned with directional deviations, highlighting the substantial active management

strategies employed by mutual funds.
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2.2.3 Descriptive Statistics on Stock Active Share

Table 2 presents the summary statistics for the same measures introduced in the sub-panels of
Table 1, but aggregated across mutual funds. Thus, the reported summary statistics are based on
stock-month observations. Similar to Table 1, it is organized into two panels corresponding to the
S&P500 (Panel I) and S&P400 (Panel II). For each benchmark index, sub-panel A displays the
cumulative weight of a stock disclosed by mutual funds in their portfolios, while sub-panel B shows
the cumulative weight of the stock if it were to match its weight in the benchmark index, referred to
as the cumulative benchmark-matching weight. Sub-panel C reports the cumulative stock deviation
from the benchmark, or Net Stock Active Share (NSAS), calculated as the difference between the
two preceding measures, and sub-panel D provides the cumulative absolute deviation from the
benchmark, or Stock Active Share (SAS).

Panel I shows that mutual funds allocate 110.34% of their capital to stocks on average, with a
standard deviation of 174.33%, compared to a benchmark-matching mean of 40.84% and a standard
deviation of 137.27%. This indicates a general tendency for mutual funds to overweight certain
stocks relative to the benchmark. Only 0.89% of stock-month observations have negative NSAS
values, mainly from large firms like Microsoft, ExxonMobil, and Walmart. The high correlation
(0.78) between NSAS and SAS suggests that both measures yield similar results in stock selection,
with an even higher correlation (0.94) in the NSAS > 0 subsample.

In Panel II, mutual funds allocate an average of 34.60% to MidCap stocks, with a standard
deviation of 31.88%, while the benchmark-matching mean is 20.60%. About 15.89% of NSAS
values are negative, indicating more frequent underweighting in MidCap stocks compared to BigCap
stocks. The correlation between NSAS and SAS is 0.69, showing a moderately strong relationship.

Overall, mutual funds allocate more capital to BigCap stocks, followed by MidCap, with a
higher tendency to underweight MidCap stocks. The high correlations between NSAS and SAS
across all indices suggest these measures can be used interchangeably in most stock selection

strategies.
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3 Preliminary Results on SAS Portfolio Performance and Composition

In this section, we empirically evaluate the performance of an investment strategy that selects, at
each period, the stocks with the highest SAS values, repeating this process at the start of each
period. The core idea is that one can only outperform the benchmark index with a portfolio that
deviates sufficiently from it. Therefore, investing in a limited number of stocks with sufficiently
high SAS values, based on mutual fund holdings disclosures, could help achieve this goal. We
implement this strategy by sorting the SAS values of the benchmark index constituents, reported as
held by at least one mutual fund, into quantiles at each period. We then examine the performance of
portfolios composed of assets in each quantile. Intuitively, the lower quantile portfolio, composed
of assets with minimal deviations from the benchmark index, should perform similarly to the index.
In contrast, the upper quantile portfolios, composed of assets with more significant deviations, are
expected to outperform the index. We will test this hypothesis in the following sections.

Let 9, :(SAS) denote the nth quantile portfolio at time ¢, formed by sorting stocks based on
their SAS values (assuming these values are known at time ¢). The return of this portfolio from ¢

to ¢t + 1 is computed as follows:

rQn,t(SAS),t+1 - Z )\i,tri,t—i-l (3)
1€ Qn,t (SAS)

where 7; ;41 is the return of stock ¢ from ¢ to ¢ + 1, and \;; is the weight of stock ¢ at time ¢. The
weights are normalized such that ) . O 1(SAS) Ait = 1. Stocks in the quantile portfolios can be
equally weighted, value-weighted, or weighted according to their SAS values.’

Table 3 presents performance metrics for the benchmark indices and SAS-weighted decile,
quintile, and tercile portfolios from October 2007 to December 2023, where assets are sorted

1

by SAS values and rebalanced quarterly.'” These portfolios are called SAS-Oracle,'! assuming

Subsequent unreported results show that the weighting scheme has minimal impact on the performance of the
SAS-sorted portfolio strategies.

10We also tested value-weighted and equal-weighted portfolios with similar results, which are omitted for brevity.
Monthly rebalancing results are available in the external appendix, showing similar patterns.

"'The term “Oracle” suggests that investors can perfectly anticipate SAS values, reflecting non-public information
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contemporaneous or perfectly anticipated SAS values. The table is divided into two panels: Panel
I for the S&P500 and Panel II for the S&P400.

Across all indices, the top quantile portfolios—decile, quintile, or tercile—consistently outper-
form the lower quantiles and the benchmark index in terms of mean return, standard deviation,
Sharpe ratio, and alpha. In Panel I, the top decile portfolio (Q10) delivers a mean return of 1.56%,
compared to 0.86% for the benchmark and 0.82% for the bottom decile (Q1). This trend is mirrored
in the S&P400, where Q10 outperforms the lower quantiles and the benchmarks. The top portfo-
lios also exhibit lower volatility than the benchmark, with Q10 in the S&P500 having a standard
deviation of 4.24%, compared to 4.66% for the benchmark and 7.10% for Q1.

Sharpe ratios rise from the bottom to the top quantiles, with Q10 in the S&P500 achieving 0.35,
significantly higher than the benchmark’s 0.17 and Q1’s 0.10. Similar upward trends are observed
across quintile and tercile portfolios, further confirming the superior risk-adjusted performance of
the top quantile portfolios. Kurtosis improves across the quantiles, and though skewness becomes
more negative in top portfolios, the adjusted Sharpe ratio remains higher for top quantiles due to
better overall performance.

Alpha values, which measure risk-adjusted returns against the Fama-French five factors and the
momentum factor, further reinforce the outperformance of top quantile portfolios. In the S&P500,
Q10 generates an alpha of 0.74%, compared to —0.02% for the benchmark and —0.13% for QI.
Similar patterns are observed in the S&P400, where Q10 generates an alpha of 1.41%, compared
to —0.07% for the benchmark and 0.27% for Q1.

Although quintile and tercile portfolios show similar performance patterns, their Sharpe ratios
and alphas are generally lower than those of the top decile portfolios, suggesting that focusing on a
smaller set of high-SAS stocks enhances portfolio efficiency.

Overall, the SAS strategy consistently identifies high-performing stocks, with top portfolios
outperforming both the benchmark indices and lower quantiles regarding returns and risk-adjusted

performance. Concentrating on the top decile portfolios allows for significant outperformance

held by mutual fund managers.
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without increasing risk, underscoring the value of active mutual fund managers’ stock selection.

A long-term evaluation of the SAS-Oracle portfolios from October 2007 to December 2023
shows significant outperformance over passive strategies. The top decile SAS-Oracle portfolio
achieved cumulative returns of approximately 300% for BigCap stocks (and over 400% for MidCap
stocks), translating to a fourfold increase in initial investment. For example, a $1,000 investment
in the BigCap SAS-Oracle portfolio would have grown to $3,850 by December 2023, compared to
a 147% return for the S&P500. The strategy also delivers superior risk-adjusted returns (alphas),
with cumulative alphas of around 130% for BigCap stocks and 250% for MidCap. In contrast,
benchmark indices’ alphas remain close to zero, indicating passive returns are largely driven by
systematic risk exposure.'”

The SAS-Oracle strategy finally shows strong persistence and consistency in selecting high-
performing stocks, particularly for the BigCap. In this category, Microsoft is selected 98.5% of
the time in the SAS-Oracle top ventile portfolio, followed by JP Morgan Chase (89.7%), Alphabet
(78.5%), Visa (61.5%), and Meta (57.4%). For MidCap stocks, Reinsurance Group of America
leads with a 44.6% selection rate, followed by ANSYS (30.3%), IDEX (16.9%), Carlisle (15.9%),
and BJS Wholesale Club (14.4%)."?

This section provides empirical evidence that mutual fund holdings contain collective infor-
mation capable of consistently outperforming the market when effectively utilized. This suggests
that the success of the SAS strategy is driven by managerial skill, not random chance. If fund
managers lacked skill, the SAS strategy’s performance would be random and fail to surpass the
benchmark. Instead, the strategy aggregates their expertise into superior knowledge, similar to
how artificial intelligence combines information efficiently. The persistence of certain stocks in the
SAS-Oracle portfolio further indicates that the strategy is not random but potentially predictable.
Although delays in fund holdings disclosures limit real-time application, this persistence offers

valuable insights for stock selection predictability, which will be explored in the next section.

12Details on cumulative returns and alphas of the SAS-Oracle strategy and benchmark indices are provided in Figure
B1 in the external appendix.
3For an illustration of stock selection history, refer to Figure B2 in the external appendix.
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4 Predicting Managers’ Convictions About Stock Values

Following DeMiguel et al. (2023), we apply various machine learning methods to predict stocks’
SAS measures and select stocks for our investment portfolio. This involves using the history of
mutual fund holdings and stock characteristics to learn decision rules that mimic the skills of mutual
fund managers. The objective is to build a model that predicts future SAS values based on current
stock characteristics, akin to how managers select stocks using publicly available information.

We frame this supervised learning task as either a regression problem for predicting the stock’s
SAS measure or a classification problem for predicting stock selection into the SAS strategy. Simple
models, such as Ordinary Least Squares, serve as baselines, while more advanced models include
Elastic Net, Random Forests, Gradient Boosting, and Deep Neural Networks.*

Ordinary Least Squares (OLS) assume a linear relationship between predictors and outcomes
but may lead to overfitting, especially with many predictors. Elastic Net (ENET) addresses this
by adding regularization to prioritize important predictors while penalizing less significant ones.
Random Forests and Gradient Boosting capture non-linear relationships and interactions between
predictors. While Random Forests (RF) reduce variance by averaging predictions across multiple
decision trees, Gradient Boosting (GB) iteratively improves predictions by focusing on observations
poorly predicted by previous trees. Lastly, we employ Deep Neural Networks (DNN) to approximate

complex functions through layers of interconnected neurons.

4.1 Data and Procedure

We utilize 90 stock-level variables, as detailed in Table 4, following Gu et al. (2020), alongside
9 macroeconomic predictors described in Welch and Goyal (2008). These include key variables

such as the dividend-price ratio, earnings-price ratio, book-to-market ratio, net equity expansion,

1“These models are trained and validated using cross-validation to ensure they generalize well to unseen data, and
we use a modified version of the code provided by DeMiguel et al. (2023) to verify our calculations, except for Deep
Neural Networks, which are not considered by these authors. Further details about the mathematical formulations
of these models, including regularization techniques, decision tree splitting, and neural network architecture, can be
found in the external appendix.
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Treasury-bill rate, term spread, default spread, and stock variance.'”

Data pre-processing involves replacing missing values with cross-sectional averages for each
period. Additionally, all explanatory variables are standardized by subtracting their cross-sectional
mean and dividing by the cross-sectional standard deviation on a monthly basis.

The dataset comprises stock-month observations, splitinto training, validation, and test samples.
A recursive training procedure is applied with an expanding estimation window. The model is
updated quarterly, incorporating newly available data. Our initial training period spans from
August 2007 to December 2017, with the final 12 months of this period reserved for validation.'®
The model parameters are updated at quarterly as the portfolio’s rebalancing frequency.

We optimize model hyperparameters—such as regularization parameters in Elastic Net, the
number of trees in decision trees, and architecture specifics for deep neural networks (e.g., layers,
neurons, activation functions, regularization rates, and learning rates)—using the validation set.
The aim is to minimize overfitting and improve the model’s ability to generalize to unseen data.
We base our hyperparameter selection on minimizing the loss function and ensuring convergence
in performance between the training and validation datasets. Successful convergence indicates the
model’s ability to predict future values in the test set.

We evaluate the predictive performance of the models both statistically and financially. Statisti-
cally, we use two metrics: the traditional out-of-sample R* (R, ) and a modified out-of-sample
R? (R3s,,)» designed to account for potential biases in individual stock SAS predictions. These

metrics are defined as:
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I5We obtain monthly updates for these variables from Amit Goyal’s website.
16Details of the recursive training procedure and additional methodological clarifications are available in the external
appendix.
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Here, T represents the stock-time observations in the test sample.

4.2 Prediction Results

This section presents the results of the machine-learning (ML) models used to predict SAS measures.
We recall the motivations behind our approach. First, there is a delay in the release or unavailability
of real-time information about mutual fund portfolio holdings. Second, we aim to reverse engineer
mutual fund managers’ stock-picking decisions to learn from their stock selection skills.

Table 5 presents the out-of-sample prediction performance measures across the various machine
learning models we consider. The dependent variable is the logarithm of the stock active share,
with the predictors being macro variables and stock characteristics. The table is organized into
two panels: Panel I presents the results for the S&P500 index and Panel II covers the S&P400
index. Each panel is organized into three sub-panels: decile portfolios (.A), quintile portfolios (.B),
and tercile portfolios (.C), which correspond to different quantile groupings of stocks based on
the predicted variable. The DepVar (dependent variable) shows the actual values, while PredVar
(predicted variable) reflects the values predicted by each machine learning method. Other columns
include the coeflicient of variation (CV), and two versions of out-of-sample R-squared metrics: the
traditional out-of-sample R, and the modified out-of-sample R?,g, . which accounts for bias
in predicting individual stock SAS.

Across the benchmark indices, the coefficient of variation (CV') tends to decrease as we move up
the quantiles. It is also lower for BigCap stocks reflecting for stock active shares what is commonly
recognized for stock return volatility. This stylized fact can be explained by several considerations.
On the one hand, BigCap stocks are generally more liquid and widely held, which stabilizes demand
and reduces the variability of SAS. Additionally, while SAS measures the demand for stocks by
institutional investors, it is indirectly linked to stock prices, as increased or concentrated demand
for a specific stock can potentially drive its price upward, and vice versa.

Focusing on Panel I, the results show consistency across different types of quantiles and

machine-learning methods. The modified R? is generally positive, although it is negative for some

18



quantiles and models. For example, in decile portfolios, R? is negative for Q1 with GB, OLS, and
Elastic Net and for Q10 with OLS and Elastic Net. Despite these exceptions, models like DNN, RF,
and GB generally perform better. Regardless of the machine learning method, the R? values tend
to increase gradually from the lower to the higher quantiles. For instance, in decile portfolios, the
modified R? with RF ranges from 0.13 (Q1) to 0.34 (Q10), while with GB it ranges from 0.13 (Q2)
to 0.30 (Q10). OLS and Elastic Net show weaker performance, with R? values ranging from 0.05
(Q2) to 0.20 (Q9) for OLS and 0.06 (Q2) to 0.21 (Q9) for Elastic Net. DNN shows the strongest
performance, with R? values increasing from 0.03 (Q1) to 0.36 (Q10).

The same pattern is observed in quintile portfolios, where the top quintile (QS5) displays modified
R? values of 0.36 (RF), 0.34 (GB), and 0.37 (DNN), and tercile portfolios, where the top tercile
(Q3) shows values of 0.39 (RF), 0.36 (GB), 0.16 (OLS and Elastic Net), and 0.38 (DNN). The
traditional 122 values are generally lower than the modified 122, as the modified version corrects for
bias in the prediction. Still, they follow a similar pattern across quantiles and ML methods.

Regarding proximity between actual SAS and predicted SAS, OLS and Elastic Net tend to show
the closest values in the top quantile portfolios. For example, the difference between the actual and
predicted values in Q10 is 0.06 for OLS and Elastic Net, compared to 0.43 for Random Forest, 0.24
for Gradient Boosting, and 0.31 for DNN.

Another important observation is the improvement in R? values and the reduction in prediction
bias as the portfolio concentration decreases, i.e., when more assets are included in the portfolio.
For instance, with Random Forests, the modified R? increases from 0.34 in the top decile to 0.36
in the top quintile and 0.39 in the top tercile. When all assets are included in a global portfolio, the
R? is 0.48. Similarly, the prediction bias, which can be approximated by the difference between
the modified and traditional R?, decreases from 0.27 in the top decile to 0.15 in the top quintile
and 0.09 in the top tercile and is just 0.03 for the global portfolio. These improvements are even
more pronounced with DNN, where the bias decreases from 0.13 in the top decile to 0.01 in the

top tercile.!” In the global portfolio, the bias disappears entirely, as both R? values equal 0.43.

7While the top decile portfolio was identified as the best candidate for implementing the SAS-Oracle strategy,
offering greater concentration with similar performance metrics to the top quintile and tercile portfolios, the recom-
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Panel II of Table 5 shows that the predictive quality for MidCap stocks is generally lower than for
S&P500, with small or negative modified R? values across most quantiles and methods. However,
DNN and RF outperform, achieving modified R? values of 13% and 7% for the top decile, 11%
and 9% for the top quintile, and 10% for the top tercile in both cases.

Gu etal. (2020) and Kaniel et al. (2023) also provide out-of-sample R? to assess the performance
of their machine learning specifications in predicting the monthly risk-adjusted returns out-of-
sample, for stocks and mutual funds, respectively. The R? values achieved for the whole sample
range from -3.46% to 0.40% for the former and from -1.60% to 5.00% for the latter.'® While these
authors predict returns, we predict stock active shares, which reflect managers’ convictions about
asset values. Our predictive performance is superior in this context. In comparison, this suggests
that stock active shares may provide more reliable insights into managerial expertise and stock
selection than direct return predictions.

The predictions of SAS by machine learning methods are highly correlated, as shown in Figure
3, with correlations ranging between 0.75 and 0.89 when applied to S&P500 stocks. These
correlations vary between 0.71 and 0.82 for MidCap stocks.

Since the quantile portfolios in Table 5 are based on predicted SAS values, the PredVar column
should increase from the bottom to the top quantile, which is consistently observed across methods.
Similarly, the actual SAS values in the DepVar column show the same upward trend, confirming
that the SAS-feasible strategy aligns with the SAS-Oracle strategy. High correlations between
actual and predicted SAS values—ranging from 0.59 to 0.66 for BigCap, and 0.41 to 0.49 for
MidCap—further support the reliability of these predictions (Figure 3). These out-of-sample results
demonstrate model generalizability, reinforcing the SAS-feasible strategy, whose performance is

compared to the SAS-Oracle and other strategies in the next section.

mendation is more nuanced for the SAS-feasible strategy. Less concentrated portfolios, such as quintile or tercile, may
be preferred due to improved SAS predictability and reduced bias.
18See Table 1 in Gu et al. (2020) and Table 3 in Kaniel et al. (2023).
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S Performance of the Machine Learning-based SAS Strategy

The SAS-feasible strategy uses machine learning to form portfolios by ranking stocks based on their
predicted SAS measure. The approach involves going long on the top-quantile portfolio of stocks
with the highest predicted SAS values. We use predictors measured at time ¢ and a machine learning
model trained on data up to period ¢ to anticipate the time-¢ stock active share. The strategy’s
financial performance is evaluated out-of-sample using real-time data, with performance metrics
including mean, standard deviation, skewness, kurtosis, Sharpe ratio, and adjusted Sharpe ratio.
We also report the average risk-adjusted return (alpha) relative to the Fama-French and momentum
factors, with standard errors calculated using the Newey-West HAC variance-covariance matrix to

account for heteroskedasticity and autocorrelation.

5.1 The SAS-feasible Investment Strategy with Quarterly Rebalancing

Table 6 provides summary statistics for the SAS-feasible investment strategy with quarterly re-
balancing. The table is organized into three blocks representing top-quantile portfolios (Top 10,
Top 5, Top 3) and five machine-learning methods (RF, GB, OLS, ENET, DNN), across two panels
corresponding to the benchmark indices (S&P500 and S&P400). For comparison, the table also
includes performance statistics for analyst recommendations (AR), the SAS-Oracle strategy (ORA)
based on actual SAS measures, and the benchmark index. The out-of-sample evaluation covers the
period from January 2018 to December 2023.

For all indices, the SAS-feasible strategy (Top 10, Top 5, Top 3 portfolios) consistently delivers
lower average returns than the SAS-Oracle portfolios but still significantly outperforms the bench-
mark index. For example, in the S&P500, the Top 10 DNN portfolio achieves an average return
of 1.39%, compared to 1.42% for the SAS-Oracle portfolio and 1.09% for the benchmark. This
trend is consistent across the S&P400 index, with SAS-feasible portfolios trailing the SAS-Oracle
in returns but comfortably exceeding the benchmark.

Regarding volatility, the SAS-feasible portfolios generally show lower or comparable volatility

to the benchmark index and the SAS-Oracle portfolios. For instance, in the S&P500, the Top
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10 DNN portfolio has a volatility of 5.02%, lower than both the SAS-Oracle (5.70%) and the
benchmark (5.21%). Similarly, across the S&P400 index, the SAS-feasible portfolios exhibit
moderate volatility, demonstrating better risk control compared to the benchmark.

Sharpe ratios indicate that the SAS-feasible strategy consistently delivers better risk-adjusted
performance than the benchmark across all indices, closely approaching that of the SAS-Oracle
strategy. In the S&P500, the Top 10 DNN portfolio achieves a Sharpe ratio of 0.25, outperforming
both the benchmark’s 0.18 and the SAS-Oracle’s 0.22. A similar trend is observed in the S&P400
index, where the SAS-feasible strategy outperforms the benchmark and remains competitive with
the SAS-Oracle strategy. This demonstrates that the SAS-feasible strategy provides strong risk-
adjusted returns, even with predicted rather than actual SAS values.

Alpha values reinforce the profitability of the SAS-feasible strategy, with consistently positive
alphas across all indices and portfolios. In the S&P400, for instance, the Top 10 DNN portfolio
achieves an alpha of 0.68%, surpassing the AR’s 0.18% and the benchmark’s -0.06%. This pattern
is similarly observed in the S&P500, where SAS-feasible portfolios generate significant alphas,
rivaling the SAS-Oracle portfolios and outperforming the benchmark indices.

We compare the performance of our SAS-feasible strategy with other machine learning-based
strategies for investing in stock or mutual fund portfolios. Gu et al. (2020) report annualized Sharpe
ratios ranging from -0.23 in the lowest decile to 0.81 in the highest decile for prediction-sorted stock
portfolios. Kaniel et al. (2023) report monthly Sharpe ratios from -0.23 to 0.15 for mutual fund
portfolios, and DeMiguel et al. (2023) show a monthly Sharpe ratio of up to 0.192 in a long-only
mutual fund portfolio. These comparisons demonstrate that the performance of our SAS-feasible
strategy is competitive with existing machine learning-based investment methods.

In summary, while the SAS-Oracle strategy yields slightly higher returns, the SAS-feasible
strategy still delivers superior returns and risk-adjusted performance compared to the benchmark.
The narrow performance gap between the SAS-feasible and SAS-Oracle portfolios highlights the
ML models’ robust learning ability, allowing them to closely replicate the performance of the

otherwise impractical SAS-Oracle strategy. SAS-feasible portfolios often have lower standard de-
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viations, indicating better risk management, and consistently outperform the benchmark regarding
Sharpe ratios and alphas. The significant positive alphas suggest the strategy remains profitable,
even after considering transaction costs, which are likely low due to quarterly rebalancing. Figure
2 shows the sustained performance of machine learning-based portfolios over time.

Table 7 provides additional performance measures, further confirming the analysis presented
earlier. For instance, the comparison of the Top 10 DNN, Top 10 ORA, and Index portfolios
across the S&P500 andS&P400 indices shows that the DNN model consistently outperforms the
benchmark index in all panels, demonstrating superior risk-adjusted returns (Sortino, Information
Ratio) and better risk management (lower Drawdown and VaR). In the S&P500, the DNN portfolio
surpasses the ORA strategy, delivering higher Sortino and Information Ratios while maintaining
lower risk exposure. However, in the S&P400, while the ORA portfolio achieves better Sortino and
Information Ratios, the DNN portfolio still provides more robust risk management with a lower
Drawdown. These results highlight the machine-learning models’ ability to deliver competitive
returns and manage risk effectively, rivaling the infeasible SAS-Oracle strategy while consistently

outperforming the passive strategy across all benchmark indices.

5.2 SAS-feasible versus Analyst Recommendation Consensus

Analysts serve as information intermediaries, gathering, analyzing, and producing investment-
related insights for the broader community (Kothari et al.; 2016). Unlike mutual fund managers,
who trade on behalf of their clients and disclose their holdings ex-post to comply with regulations,
analysts provide ex-ante recommendations, allowing investors to act immediately on their advice.
Both analysts and fund managers bear reputational and financial risks, motivating them to exert
considerable effort in identifying valuable stocks. Thus, comparing the performance of portfolios
formed based on machine learning predictions of mutual fund holdings (SAS-feasible strategy) and
those based on analyst recommendations (AR strategy) is a worthwhile exercise.

In this section, we evaluate the performance of investment strategies that involve buying top

sorted stocks based on consensus analyst recommendations or machine learning-predicted SAS
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measures derived from mutual fund managers. Analysts regularly provide stock recommendations
ranging from 1 (strong buy) to 5 (sell). To facilitate comparison with SAS values, we transform
the original recommendation scores by subtracting the value from 6, ensuring that higher values
represent stronger stock valuations. This transformation allows a consistent interpretation of stocks
sorted based on transformed analyst recommendations or predicted SAS measures.

Figure 3 highlights the correlations between analyst recommendations and ML-predicted SAS
measures for different benchmark indices from January 2018 to December 2023. The results
indicate low but positive correlations, typically ranging from 0.1 to 0.2. Linear models such
as OLS and Elastic Net show slightly higher correlations with analyst recommendations than
non-linear machine learning models, with the strongest correlations observed in BigCap stocks.
Therefore, our predicted measure of mutual fund managers’ attention to stocks aligns with analysts’
consensus about stock valuation, though the two measures are far from being perfectly correlated.

We now turn to the investment performance comparison. The AR columns in Table 6 and
Table 7 report the performance of the AR strategy.”” Similar to the SAS-feasible strategy, the
AR strategy involves sorting stocks based on analyst consensus recommendations and investing
in the top quantile of stocks with the strongest buy recommendations, with quarterly rebalancing.
Despite performing well relative to the benchmark indices, the AR strategy falls short compared
to the SAS-feasible strategy. The average returns and alphas, as measured with the Fama-French
5 factors and the momentum factor, are significantly higher in the AR portfolio compared to the
benchmark index for S&P400. However, for the S&P500, the differences between the AR portfolio
and the benchmark index, even though positive, are not statistically significant at the standard level.
Across various metrics—average return, standard deviation, and Sharpe ratio— the SAS-feasible
and SAS-oracle portfolios consistently outperform the AR portfolios in the S&P400 (see Table 6
and A4). Results are more nuanced for the S&P500 index.

Across benchmark indices, the portfolios formed on lagged SAS (ORA_1, ORA 2, and ORA _3)

offer similar performance as AR portfolios. Portfolios constructed using lagged SAS for the

19Table A4 in appendix reports the results of tests of differences in mean return, Sharpe ratio, and alphas between
the SAS and AR portfolios.
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S&P400 index typically underperform relative to oracle SAS and machine learning-based SAS
portfolios, while exhibiting performance comparable to AR portfolios. When it comes to the
S&P500 index, only Oracle’s portfolios do much better than the other strategies, which yield about
the same performance results. The comparable performance between the MLSAS strategy and
the AR strategy, together with their similar challenges in surpassing the benchmark index, may be
explained by the greater informational efficiency of the BigCap market. Big companies are closely
monitored by the public, and any information pertaining to these stocks is rapidly reflected in their
prices; this may elucidate the challenge of significantly surpassing the benchmark for these stocks.

Additionally, Table 7 shows that the MLSAS portfolios, in particular the Top 10 DNN port-
folios, surpass the AR portfolios in both performance and risk management across the S&P500
and S&P400 indices. DNN portfolios achieve higher risk-adjusted returns and better control of
downside risks, despite slightly higher turnover in some cases. These results demonstrate that
machine learning strategies like DNN offer superior portfolio performance and risk management
compared to traditional analyst-based approaches.

In summary, while analyst recommendations offer valuable insights, machine learning-based
predictions of SAS measures derived from mutual fund managers provide superior investment
guidance, consistently yielding higher returns. However, this analysis highlights the ongoing
importance of analysts in delivering meaningful insights. Given the expertise required to surpass
analyst-driven strategies, it may still be worthwhile for investors to pay for access to high-quality
analyst advice. Our findings also underscore the advantages of active management, particularly
in the selection of MidCap stocks, which may exhibit lower informational efficiency relative to

BigCap stocks.

5.3 Which covariates matter?

We now examine the inner workings of the machine learning models to investigate the relative
importance of the input variables driving model performance. We use Local Interpretable Model-

agnostic Explanations (LIME), as introduced by Ribeiro et al. (2016). The objective of LIME is to
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identify an interpretable model that is locally faithful to the machine learning model’s prediction
function and understandable to humans, regardless of the features used by the model. LIME
identifies which features are most important in explaining individual predictions by approximating
the model locally with a simpler, interpretable representation. Additionally, it shows the direction of
each feature’s influence, revealing whether it contributed favorably or unfavorably to the predicted
value for a specific entity.

By aggregating explanations across all observations in the test sample, we can determine
the variables that primarily drive the model predictions. LIME’s detailed feature importance
information enables better comprehension of the machine learning models’ predictions, builds user
trust, and can be leveraged to improve model performance or communicate more effectively with
clients about portfolio outcomes.

Figures 4 illustrate the most important features the machine learning models identified following
quarterly retraining. The predictors are ranked such that the top 10 most important features are
listed from most to least important. Red bars indicate that a characteristic positively contributes to
the predicted value, while dark blue bars indicate negative contributions. The models show a high
level of agreement on the critical factors influencing stock selection, reinforcing the reliability of the
predictions. The key features can be broadly categorized into three groups. The first group relates to
past/recent performance measures, including the stock’s last period SAS value, momentum over 1,
12, or 36 months, and past Treynor and Sharpe ratios. These variables generally capture momentum
effects, as past top performers are expected to continue performing well. However, reversal effects
may appear when past top performers are predicted to underperform in the future.

The second group comprises macroeconomic predictors, such as the treasury bill rate (zbl),
default yield spread (dfy), book-to-market value of DJIA (bm), net equity expansion (ntis), and term
spread (tms). Both tbl and tms negatively predict future SAS values, suggesting that stocks favored
by managers tend to underperform when interest rates rise or term spreads expand. In contrast,
variables like bm, earnings-to-price ratio (E12), and dfy positively contribute to the predicted SAS

measure, indicating that stocks appreciated by fund managers are likely to benefit when these factors
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increase.

The third group includes signals of stock growth opportunities and risks, represented by variables
such as the convertible debt indicator (convind), market capitalization (mc), long-term debt growth
(Igr), Sin stock indicator (sin), 36-month rolling Sharpe Ratio (sr36m), industry-adjusted change in
asset turnover (chatoia), accruals volatility (stdacc), and sales-to-cash ratio (salecash). Consistent
with Gu et al. (2020), sin stocks appear unattractive to fund managers, as indicated by their negative

contribution to the predicted SAS measure.

6 Carbon Emissions and SAS Investment

Responsible investing has increasingly gained importance in investor performance criteria. How-
ever, the question of whether responsible investing, particularly with respect to carbon emissions,
impacts financial performance remains open.”’ To address this issue, we extract carbon emissions
data for stocks in the benchmark indices (S&P400 and S&P500) from the Eurofidai database using
firm ISIN codes. We compute carbon emissions intensity by dividing the sum of scope 1 (direct)
and scope 2 (indirect) C'O, emissions by the firm’s market capitalization. A higher emission
intensity indicates that a firm produces more carbon emissions per dollar of market capitalization,
either directly or indirectly.”? Bolton and Kacperczyk (2023) and Aswani et al. (2023) provide
convincing arguments for the use of emission level and emission intensity respectively in studying
the market perception of the impact of firm emissions on climate change.”” Therefore, we also run
the same regressions but using carbon emissions level instead of carbon emissions intensity as our

main explanatory variable.

20Matsumura et al. (2014) find that increase in carbon emissions negatively affects the firm’s value for S&P500
firms; meaning that market penalizes firms for their carbon emissions. In contrast, Bolton and Kacperczyk (2021,
2023) find higher stock returns associated with higher levels and growth rates of carbon emissions for the US firms
and internationally, which they interpreted as investors demanding compensation for their exposure to carbon emission
risk. Furthermore, Aswani et al. (2023) using carbon intensity instead of carbon emissions, find no association between
emissions and returns.

2I'The data is winsorized at the 1% level to minimize the effect of outliers.

22Bolton and Kacperczyk (2023) argue that : “What the world needs and aims for is first a reduction in carbon
emission levels, and second only an improvement in carbon efficiency.” Whereas Aswani et al. (2023)’s counterargument
is that: “Emissions arise from a firm’s core operations and, absent significant short-term innovations in a firm’s
production process, unscaled emissions are largely determined by the quantity of goods produced and sold.
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We then examine the relationship between stock carbon emissions and fund manager conviction

about stock value, as measured by our SAS metric. We specify the following econometric model:

In (SASi,t) = fo+ F1 In (C’arbon@t) +vi+ A+ 6)

where SAS; ; is the stock ¢’s average SAS measure during year ¢, and C'arbon; ; is either the stock’s
carbon emissions intensity or carbon emissions level. The terms ~; and ); represent stock and time
fixed effects, respectively. [3; captures the elasticity of a stock’s SAS with respect to its carbon
emissions.

Panel A (respectively, Panel B) of Table 8 shows the regression results with carbon emissions
intensity (respectively, carbon emissions level) as main explanatory variable. The elasticity of
the SAS measure to emission intensity is negative and statistically significant, whereas it is non-
significant or significantly positive when emission level is used. The negative coeflicient of emission
intensity suggests that stocks heavily used by fund managers to deviate from benchmark indices
and contribute to overperformance also tend to have lower emission intensity. This means that a
stock improvement in emission efficiency (a decrease of emission intensity) increases its likelihood
to be selected into SAS portfolio. For MidCap and BigCap stocks, the effect is even stronger: a
10% increase in emission intensity results in a 2.9% and 1.5% decrease in their SAS measures,
respectively. These shifts in SAS values due to changes in emission intensity are substantial enough
to influence the selection or exclusion of stocks from SAS portfolios.

In contrast, for BigCap stocks, a 10% increase in carbon emissions level within a firm leads
respectively to 0.6% increase in its SAS measure. The positive coefficient of emission level
suggests that higher carbon emissions level predicts higher stocks SAS value and therefore higher
stock performance. This interpretation aligns with the view that stocks with higher level of carbon
emissions earn a positive carbon premium that reflects exposure to climate related concerns and
their implied risks (physical, transition, or regulatory risks) to investors (Bolton and Kacperczyk;

2021, 2023). For MidCap stocks, the effect is not significant.

28



While we attempt to control for endogeneity using stock and time fixed effects, there remains
a potential for bias in the estimated elasticities. Nevertheless, our findings strongly suggest that
the SAS strategy is compatible with ESG (Environmental, Social, and Governance) criteria as it
reduces carbon intensity of the portfolio, and it can be used to achieve both financial performance

and sustainable investment objectives.

7 Conclusion

This study demonstrates that mutual fund managers collectively possess stock-picking skills that
outperform passive benchmarks and consensus-based strategies from analyst recommendations. By
applying machine learning techniques to mutual fund holdings, investors can effectively leverage
these skills. Our analysis shows that constructing a portfolio of stocks with the most significant
deviations from the benchmark leads to superior performance, as measured by the adjusted Sharpe
ratio, while delivering positive risk-adjusted returns (i.e., alphas) after accounting for systematic
risk exposures such as Fama-French five factors and momentum factor. Thus, by analyzing mutual
fund stock holdings, we demonstrate that investors can harness fund manager expertise through
machine learning.

The evaluation of the stock active share’s feasible investment strategy does not account for
transaction costs, such as bid-ask spreads, brokerage commissions, or the market impact of trading.
While these costs are often overlooked in studies due to their quantification challenges, they play a
critical role in the real-world profitability of investment strategies. Future research should prioritize
incorporating these factors into performance assessments, as advocated by Ferson (2010).

We also examined the relationship between stock active share and firm carbon emissions level
and intensity, finding both a negative correlation for emission intensity and a positive correlation
for emission level. This suggests that the financial performance of the stock active share’s feasible
investment strategy may be compatible with environmental performance. However, we approach
this interpretation cautiously, as the observed association may hide various causal effects that

warrant further investigations.
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Table 1: Descriptive statistics of fund portfolio weights and deviations from benchmark

For each benchmark index (S&P500 in Panel I and S&P400 in Panel II), the table displays descriptive statistics of the
stock weight disclosed by the mutual fund, the stock weight that would be disclosed if the mutual fund invested the
same weight as in the benchmark index, and the deviations from benchmark (DFB and ADFB), considering all mutual
funds, all benchmark index constituents with a mutual fund holding disclosure, and across all time periods. Reported
statistics are the mean, standard deviation, minimum, percentiles, maximum, and correlation between DFB and ADFB.
Each statistic is a single value that describes the typical weight or deviation from benchmark that mutual funds have
achieved in a stock, averaged over time and across different mutual funds. The sample period runs from August 2007

to December 2023.
Statistics Count Mean Std.Dev. Min Sthpct. 10thpet. 25thpct. Median 75thpet.  90th pet.  95th pet. Max corr(DFB,ADFD)
Panel I: S&P500 benchmark index
A. Disaggregate weight of stock holding in mutual fund portfolio (by month, mutual fund, and stock)
Full sample 12696772 0.848 1.025 -4350  0.030 0.050 0.140 0.480 1.190 2.120 2.870 54.290 -
Subsample DFB> 0 9353057  1.064 1.085 0.010  0.080 0.130 0.290 0.740 1.480 2.430 3.150  54.290 -
Subsample DFB< 0 3343715  0.242 0.441 -4350  0.010 0.020 0.040 0.090 0.240 0.660 1.020  7.370 -
B. Disaggregate weight of stock holding in benchmark index (by month, mutual fund, and stock)
Full sample 12696772 0.314 0.511  0.003 0.031 0.041 0.066 0.129 0.330 0.852 1259  7.372 -
Subsample DFB> 0 9353057  0.273 0.428  0.003 0.030 0.040 0.063 0.120 0.288 0.702 1.079 7372 -
Subsample DFB< 0 3343715  0.428 0.679  0.003 0.034 0.045 0.076 0.165 0.473 1.164 1.632 7372 -
C. Disaggregate Deviation from Benchmark (by month, mutual fund, and stock) - DFB
Full sample 12696772 0.534 0911 -7.362  -0.258 -0.092 -0.004 0.226 0.852 1.664 2.288 51.828 0.886
Subsample DFB> 0 9353057  0.792 0.907 0.000  0.019 0.043 0.151 0.491 1.115 1.932 2.574 51.828 1.000
Subsample DFB< 0 3343715 -0.187 0382 -7.362  -0.827 -0.503 -0.180  -0.055 -0.019 -0.007 -0.004  -0.000 -1.000
D. Disaggregate Absolute Deviation from Benchmark (by month, mutual fund, and stock) - ADFB
Full sample 12696772 0.632 0.846  0.000  0.008 0.018 0.068 0.301 0.892 1.688 2315 51.828 -
Subsample DFB> 0 9353057  0.792 0.907  0.000  0.019 0.043 0.151 0.491 1.115 1.932 2.574 51.828 -
Subsample DFB< 0 3343715  0.187 0.382  0.000  0.004 0.007 0.019 0.055 0.180 0.503 0.827  7.362 -
Panel II: S&P400 benchmark index
A. Disaggregate weight of stock holding in mutual fund portfolio (by month, mutual fund, and stock)
Full.sample 5816383  0.472 0.646 -5.680  0.010 0.020 0.050 0.210 0.650 1.270 1.750  20.820 -
Subsample DFB> 0 2699040  0.905 0.733  0.010  0.190 0.250 0.400 0.710 1.170 1.810 2.300 20.820 -
Subsample DFB< 0 3117343 0.098 0.105 -5.680  0.010 0.010 0.020 0.060 0.140 0.230 0.300  1.660 -
B. Disaggregate weight of stock holding in benchmark index (by month, mutual fund, and stock)
Full sample 5816383  0.281 0.139  0.001 0.107 0.130 0.180 0.255 0.352 0.468 0.549  1.702 -
Subsample DFB> 0 2699040  0.265 0.132  0.001 0.101 0.123 0.169 0.240 0.331 0.442 0.520  1.702 -
Subsample DFB< 0 3117343 0.295 0.143  0.001 0.113 0.137 0.192 0.270 0.369 0.488 0.569  1.702 -
C. Disaggregate Deviation from Benchmark (by month, mutual fund, and stock) - DFB
Full sample 5816383  0.191 0.644 -5922  -0.388 -0.308 -0.186  -0.028 0.371 0.979 1.446 20.371 0.902
Subsample DFB> 0 2699040  0.640 0.704  0.000  0.020 0.046 0.150 0.422 0.883 1.500 1.990 20.371 1.000
Subsample DFB< 0 3117343 -0.198 0.137 -5922  -0.456 -0.380 -0.273  -0.174 -0.095 -0.042 -0.021  -0.000 -1.000

Full sample 5816383  0.403
Subsample DFB> 0 2699040  0.640
Subsample DFB< 0 3117343  0.198

D. Disaggregate Absolute Deviation from Benchmark (by month, mutual fund, and stock) - ADFB
0.537  0.000  0.021 0.043 0.109 0.226 0.453 0.981 1.446  20.371

0.704  0.000 0.020 0.046 0.150 0.422 0.883 1.500 1.990 20.371
0.137  0.000 0.021 0.042 0.095 0.174 0.273 0.380 0456 5922
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Table 2: Descriptive statistics of stock active shares
For each benchmark index ( S&P500 in Panel I and S&P400 in Panel II), the table displays descriptive statistics of
stock active shares (NSAS and SAS), considering all constituents with a mutual fund holding disclosure, and across all
time periods. Reported statistics are the mean, standard deviation, minimum, percentiles, maximum, and correlation
between NSAS and SAS.Each statistic is a single value that describes the typical active share of a stock, averaged over
time. The sample period runs from August 2007 to December 2023.

Statistics Count Mean Std.Dev. Min  Sthpct. 10thpct. 25thpct. Median 75thpet.  90th pet.  95th pet. Max  corr(NSAS,SAS)
Panel I: S&P500 benchmark index
A. Aggregate weight of stock holdings in mutual fund portfolios (by month and stock)
Full sample 97546 110.342  174.329 0.000 3.960 8.190 23570 63.175 127.968  243.845 374493 6010.120 -
Subsample NSAS> 0 96680 107.264 154.947 0.010 4.100 8300 23598 62.870 126.760 238212  362.652 4585.700 -
Subsample NSAS< 0 866 453.887 790.251 0.000 0.020 0.060 12.012  221.780 547.790  968.170 1502.015 6010.120 -
B. Aggregate weight of stock holding in benchmark index (by month and stock)
Full sample 97546  40.837 137.272 0.007 0.410 0.982 3.252 9242 25945 81.534  178.674 6752.325 -
Subsample NSAS> 0 96680  36.524  100.350 0.007 0.423 0.995 3.249 9.171 25.392 76.803  160.998 4536.427 -
Subsample NSAS< 0 866 522.446 874.725 0.009 0.050 0.095 14.783 255862 643725 1175.080 1898.332 6752.325 -
C. Aggregate Deviation from Benchmark (by month and stock) - NSAS
Full sample 97546  69.504  76.324 -781.690 2.588 5.861 17.583  49.259 96945 159.114  208.568  997.837 0.780
Subsample NSAS> 0 96680  70.741  74.715 0.000 3.135 6.377 18208 49969  97.550  159.653  209.283  997.837 0.938
Subsample NSAS< 0 866 -68.559 117.211 -781.690 -322.992 -206.094 -86.177 -16.834 -0.790 -0.026 -0.009 -0.000 -0.745
D. Aggregate Absolute Deviation from Benchmark (by month and stock) - SAS
Full sample 97546 82305 101.831 0.000 3.356 6.894 19.852  54.042 106.987 185961  257.127 2898.011 -
Subsample NSAS> 0 96680  82.183  102.562 0.000 3.334 6.854 19.871  54.069 106.778  184.845  254.669 2898.011 -
Subsample NSAS< 0 866  83.107  96.888 0.001 3.494 7.166 19.732  53.835 108.570  192.329  273.444 1300.080 -
Panel II: S&P400 benchmark index
A. Aggregate weight of stock holdings in mutual fund portfolios (by month and stock)
Full sample 79349 34.601 31.883 0.000 1.870 3.700 9.780  25.870  50.160 77.232 97210 296.580 -
Subsample NSAS> 0 66738  37.399  32.462 0.030 2.320 4.510 12.060  29.530  53.470 80.700  100.551  296.580 -
Subsample NSAS< 0 12611  19.794  23.634 0.000 0.460 1.710 4700  11.170  25.710 51.050 70.025  236.230 -
B. Aggregate weight of stock holding in benchmark index (by month and stock)
Full sample 79349  20.595  21.869 0.021 0.742 1.683 5473 13936 28.182 47.656 63.594  369.237 -
Subsample NSAS> 0 66738  19.614  20.282 0.029 0.746 1.597 5.169  13.487 27.2717 45.402 59.627  239.366 -
Subsample NSAS< 0 12611  25.787  28.293 0.021 0.703 2.532 7.048 16474 34303 62.083 83.720  369.237 -
C. Aggregate Deviation from Benchmark (by month and stock) - NSAS
Full sample 79349  14.006  18.268 -141.617 -6.556 -2.037 1.662 9.406  22.563 37.938 49.248  162.099 0.685
Subsample NSAS> 0 66738  17.785 17.188 0.000 0.710 1.515 4726 12875 25.625 40.788 51.812  162.099 0.825
Subsample NSAS< 0 12611 -5.993 7.796 -141.617  -20.328  -14.901 -8.087  -3.365 -1.080 -0.263 -0.112 -0.000 -0.611
D. Aggregate Absolute Deviation from Benchmark (by month and stock) - SAS
Full sample 79349 29.524  26.300 0.000 1.470 3.124 8.647  22.663 43.168 65.324 81.224  220.468 -
Subsample NSAS> 0 66738  29.661 26.342 0.000 1.510 3.184 8.821 22792 43.328 65.533 81.596  220.468 -
Subsample NSAS< 0 12611  29.126  26.174 0.000 1.370 2.957 8.185 22317 42.740 64.673 80.190  214.320 -
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Table 3: Performance of the SAS-Oracle strategy - with quarterly rebalancing.

This table shows the performance of the SAS-Oracle strategy implemented by using the real value of stocks SAS values as computed from observed data. The
strategy consists of using the computed market-wide absolute deviation from the benchmark for each stock at time ¢ as if it was known, then sorting the stocks into
quantile portfolios based on their computed SAS values. The formed portfolio is held for three months and rebalanced in the beginning of each quarter. Oracle
portfolios are formed using ex-ante the observed (ex-post) measure of stocks’ SAS computed using mutual fund holdings when released to sort stocks into quantile
portfolios. The evaluation period goes from October 2007 to December 2023.

Decile portfolios Quintile portfolios Tercile portfolios Benchmark

Statistics Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Ql Q2 Q3 Q4 Q5 Ql Q2 Q3 Index
Panel I: S&P500 benchmark index

Mean 0.817 1.110 1.233 1426 1.146 1407 1.288 1.567 1.548 1.561 0986 1.345 1.283 1.435 1.560 1.151 1.310 1.530 0.864
Std.Dev. 7.102  6.167 5931 5375 5.094 5215 5.188 4.888 4.637 4.243 6474 5509 5.087 4.940 4.351 6.066 5.094 4.513 4.662
Sharpe.Ratio 0.104 0.168 0.195 0251 0210 0255 0.233 0305 0.317 0.350 0.140 0230 0.237 0.275 0.341 0.177 0242 0.322 0.169
Skew 0.102 -0.116 0.068 -0.279 -0.476 -0.404 -0.370 -0.103 -0.196 -0.228 -0.059 -0.193 -0.455 -0.259 -0.227 -0.087 -0.396 -0.236 -0.554
Kurtosis 3.448 3.092 3376 1.745 1536 1.739 1482 0.579 0.599 0.324 3.018 2270 1.665 0.721 0.485 2999 1.588 0.509 0.810
Adjusted.Sharpe.Ratio  0.104 0.166 0.194 0.247 0.206 0.249 0.229 0.303 0.313 0.345 0.140 0227 0.232 0.271 0.336 0.176  0.237 0.317 0.166
Alpha -0.133  0.221 0274 0.547 0.254 0495 0408 0.671 0.697 0.744 0.069 0428 0.382 0.547 0.728 0.231 0413 0.675 -0.018
s.e.alpha. 0.187 0.128 0.116 0.151 0.094 0.100 0.091 0.108 0.105 0.117 0.128 0.113 0.072 0.085 0.093 0.113  0.075 0.081 0.017
Panel II: S&P400 benchmark index

Mean 1.270 1374 1.341 1306 1370 1547 1385 1485 1.802 2.363 1.354 1330 1469 1441 2.107 1.366 1425 1.871 0.864
Std.Dev. 8286 7.024 6.321 6.236 6243 5952 5904 5593 5.633 5.428 7.381 6.155 5967 5.663 5.407 6.810 5.884 5.407 5.886
Sharpe.Ratio 0.144 0.185 0.200 0.197 0207 0.247 0.222 0.252 0.306 0.421 0.173 0204 0.233 0.241 0.375 0.189 0.229 0.332 0.134
Skew 1.030  0.119 0.065 -0.253 0.194 -0325 -0.342 -0.317 -0.268 -0.067 0475 -0.196 -0.133 -0.331 -0.157 0.252  -0.191 -0.235 -0.567
Kurtosis 7.692 3279 2516 1253 2910 1415 1558 0.551 0.792 0.318 4778 1422 1.856 0.965 0.530 3.400 1.610 0.560 2.033
Adjusted.Sharpe.Ratio  0.147 0.185 0.200 0.195 0.208 0.243 0.218 0.248 0.301 0.418 0.174 0.202 0.231 0.237 0.370 0.190 0.227 0.327 0.132
Alpha 0270 0380 0.381 0354 0441 0.629 0446 0.569 0.838 1.413 0.358 0.374 0.546 0.514 1.150 0.382 0.502 0.924 -0.067

s.e.alpha. 0.195 0.143 0.151 0.139 0.148 0.138 0.116 0.136 0.180 0.203 0.119 0.116 0.114 0.114 0.178 0.095 0.096 0.148 0.095




Table 4: Details of characteristics
This table lists the explanatory variables used in our machine learning models to predict stock selection into SAS
portfolio. The variables are inspired by Green et al. (2017) and Gu et al. (2020).

No. Acronym Firm Characteristic Paper’s author(s) Year, Journal Data Source Frequency
Panel A: Stock predictors
1 absacc Absolute accruals Bandyopadhyay, Huang& Wirjanto 2010, WP Compustat Annual
2 acc ‘Working capital accruals Sloan 1996, TAR Compustat Annual
3 age # years since first Compustat coverage Jiang, Lee & Zhang 2005, RAS Compustat Annual
4 agr Asset growth Cooper, Gulen & Schill 2008, JF Compustat Annual
5 betal2m 12-month rolling market risk’s exposure Bacon 2009, WP CRSP Monthly
6 beta24m 24-month rolling market risk’s exposure Bacon 2009, WP CRSP Monthly
7 beta36m 36-month rolling market risk’s exposure Bacon 2009, WP CRSP Monthly
8 bms Book-to-market Rosenberg, Reid & Lanstein 1985, JPM Compustat+CRSP  Annual
9 bm_ia Industry-adjusted book to market Asness, Porter & Stevens 2000, WP Compustat+CRSP  Annual
10 cash Cash holdings Palazzo 2012, JFE Compustat Quarterly
11 cashdebt Cash flow to debt Ou & Penman 1989, JAE Compustat Annual
12 cashpr Cash productivity Chandrashekar & Rao 2009, WP Compustat Annual
13 cfp Cash flow to price ratio Desai, Rajgopal & Venkatachalam 2004, TAR Compustat Annual
14 cfp.a Industry-adjusted cash flow to price ratio Asness, Porter & Stevens 2000, WP Compustat Annual
15  chatoia Industry-adjusted change in asset turnover Soliman 2008, TAR Compustat Annual
16  chesho Change in shares outstanding Pontiff & Woodgate 2008, JF Compustat Annual
17 chempia Industry-adjusted change in employees Asness, Porter & Stevens 1994, WP Compustat Annual
18 chinv Change in inventory Thomas & Zhang 2002, RAS Compustat Annual
19 chmom Change in 6-month momentum Gettleman & Marks 2006, WP CRSP Monthly
20  chpmia Industry-adjusted change in profit margin Soliman 2008, TAR Compustat Annual
21 chtx Change in tax expense Thomas & Zhang 2011, JAR Compustat Quarterly
22 cinvest Corporate investment Titman, Wei & Xie 2004, JFQA  Compustat Quarterly
23 convind Convertible debt indicator Valta 2016, JFQA  Compustat Annual
24 currat Current ratio Ou & Penman 1989, JAE Compustat Annual
25  depr Depreciation / PP&E Holthausen & Larcker 1992, JAE Compustat Annual
26 divi Dividend initiation Michaely, Thaler & Womack 1995, JF Compustat Annual
27 divo Dividend omission Michaely, Thaler & Womack 1995, JF Compustat Annual
28 dy Dividend to price Litzenberger & Ramaswamy 1982, JF Compustat Annual
29 egr Growth in common shareholder equity Richardson, Sloan, Soliman & Tuna 2005, JAE Compustat Annual
30 ep Earnings to price Basu 1977, JF Compustat Annual
31 gma Gross profitability Novy-Marx 2013, JFE Compustat Annual
32 grCAPX Growth in capital expenditures Anderson & Garcia-Feijoo 2006, JF Compustat Annual
33 herf Industry sales concentration Hou & Robinson 2006, JF Compustat Annual
34 hire Employee growth rate Bazdresch, Belo & Lin 2014, JPE Compustat Annual
35  invest Capital expenditures and inventory Chen & Zhang 2010, JF Compustat Annual
36 irl2m 12-month rolling information Ratio Bacon 2009, WP CRSP Monthly
37 ir24m 24-month rolling information Ratio Bacon 2009, WP CRSP Monthly
38 ir36m 36-month rolling information Ratio Bacon 2009, WP CRSP Monthly
39 lev Leverage Bhandari 1988, JF Compustat Annual
40  lgr Growth in long-term debt Richardson, Sloan, Soliman & Tuna 2005, JAE Compustat Annual
41 maxret Maximum daily return Bali, Cakici & Whitelaw 2011, JFE CRSP Monthly
42  mc Market value of common equity (csho*prcc_f) Banz 1981, JFE CRSP Monthly
43 moml2m 12-month momentum Jegadeesh 1990, JF CRSP Monthly
44 momlm 1-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
45  mom36m 36-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
46  mom6m 6-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
47  ms Financial statement score Mohanram 2005, RAS Compustat Quarterly
48  mve Logarithm of firm size Banz 1981, JFE CRSP Monthly
49  mve.a Industry-adjusted size Asness, Porter & Stevens 2000, WP Compustat Annual
50  nincr Number of earnings increases Barth, Elliott & Finn 1999, JAR Compustat Quarterly
51 operprof Operating profitability Fama & French 2015, JFE Compustat Annual
52 orgcap Organizational capital Eisfeldt & Papanikolaou 2013,JF Compustat Annual
53 pchcapx_ia Industry adjusted % change in capital expenditures ~ Abarbanell & Bushee 1998, TAR Compustat Annual
54 pchcurrat % change in current ratio Ou & Penman 1989, JAE Compustat Annual
55  pchdepr % change in depreciation Holthausen & Larcker 1992, JAE Compustat Annual
56  pchgm_pchsale % change in gross margin - % change in sales Abarbanell & Bushee 1998, TAR Compustat Annual
57 pchquick % change in quick ratio Ou & Penman 1989, JAE Compustat Annual
58  pchsale_pchinvt % change in sales - % change in inventory Abarbanell & Bushee 1998, TAR Compustat Annual
59  pchsale_pchrect % change in sales - % change in A/R Abarbanell & Bushee 1998, TAR Compustat Annual
60  pchsale_pchxsga % change in sales - % change in SG&A Abarbanell & Bushee 1998, TAR Compustat Annual
61 pchsaleinv % change sales-to-inventory Ou & Penman 1989, JAE Compustat Annual
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Table 4: Details of characteristics (continued)
This table lists the explanatory variables used in our machine learning models to predict stock selection into SAS
portfolio. The variables are inspired by Green et al. (2017) and Gu et al. (2020).

No. Acronym  Firm Characteristic Paper’s author(s) Year, Journal ~Data Source  Frequency
62 pctacc Percent accruals Hafzalla, Lundholm & Van Winkle 2011, TAR Compustat Annual
63  quick Quick ratio Ou & Penman 1989, JAE Compustat Annual
64 rd R&D increase Eberhart, Maxwell & Siddique 2004, JF Compustat Annual
65 rd_mve R&D to market capitalization Guo, Lev & Shi 2006, JBFA Compustat Annual
66 rd_sale R&D to sales Guo, Lev & Shi 2006, JBFA Compustat Annual
67  realestate Real estate holdings Tuzel 2010, RFS Compustat Annual
68  roaq Return on assets Balakrishnan, Bartov & Faurel 2010, JAE Compustat Quarterly
69  roavol Earnings volatility Francis, LaFond, Olsson & Schipper 2004, TAR Compustat Quarterly
70 roeq Return on equity Hou, Xue & Zhang 2015, RFS Compustat Quarterly
71 roic Return on invested capital Brown & Rowe 2007, WP Compustat Annual
72 rsup Revenue surprise Kama 2009, JBFA Compustat Quarterly
73 salecash Sales to cash Ou & Penman 1989, JAE Compustat Annual
74  saleinv Sales to inventory Ou & Penman 1989, JAE Compustat Annual
75 salerec Sales to receivables Ou & Penman 1989, JAE Compustat Annual
76 secured Secured debt Valta 2016, JFQA Compustat Annual
77  securedind  Secured debt indicator Valta 2016, JFQA  Compustat Annual
78 sgr Sales growth Lakonishok, Shleifer & Vishny 1994, JF Compustat Annual
79  sic2 2-digit SIC code Green, Hand, & Zhang 2017, RFS Compustat Annual
80 sin Sin stocks Hong & Kacperczyk 2009, JFE Compustat Annual
81 sp Sales to price Barbee, Mukherji, & Raines 1996, FAJ Compustat Annual
82  srl2m 12-month rolling Sharpe Ratio Bacon 2009, WP CRSP Monthly
83 sr24m 24-month rolling Sharpe Ratio Bacon 2009, WP CRSP Monthly
84  sr36m 36-month rolling Sharpe Ratio Bacon 2009, WP CRSP Monthly
85 stdacc Accrual volatility Bandyopadhyay, Huang & Wirjanto 2010, WP Compustat Quarterly
86  stdcf Cash flow volatility Huang 2009, JEF Compustat Quarterly
87 tang Debt capacity/firm tangibility Almeida & Campello 2007, RFS Compustat Annual
88 tb Tax income to book income Lev & Nissim 2004, TAR Compustat Annual
89 tr12m 12-month rolling Treynor Ratio Bacon 2009, WP CRSP Monthly
90  tr24m 24-month rolling Treynor Ratio Bacon 2009, WP CRSP Monthly
91 tr36m 36-month rolling Treynor Ratio Bacon 2009, WP CRSP Monthly
Panel B: Macroeconomic predictors
92 DI2 Log dividend to price ratio Goyal & Welch 2007, RFS CRSP Monthly
93 EI2 Log earning to price ratio Goyal & Welch 2007, RFS CRSP Monthly
94 bm Book value to market value for the DJIA  Goyal & Welch 2007, RFS CRSP Monthly
95 dfy Default Yield Spread Goyal & Welch 2007, RFS CRSP Monthly
96 ntis Net Equity Expansion Goyal & Welch 2007, RFS CRSP Monthly
97 tbl Treasury-bill rates Goyal & Welch 2007, RFS CRSP Monthly
98 tms Term Spread Goyal & Welch 2007, RFS CRSP Monthly
99  svar Stock Variance Goyal & Welch 2007, RFS CRSP Monthly
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Table 5: Out-of-sample measures of prediction performance
This table shows goodness-of-fit summary statistics of the machine learning models. The dependent variable is the logarithm of SAS value, and predictors are
macrovariables and stock characteristics summarized in Table 4. We consider using each benchmark index separately. The following summary statistics are
displayed: Quantile (decile, quintile, tercile) portfolio number, coefficient of variation of the dependent variable (CV) modified out-of-sample r-squared (R%, Sur)
defined in equation (5), traditional out-of-sample r-squared (R%, s,.) defined in equation (4). Quantile portfolios are formed by sorting stocks based on the predicted
variable. The initial training period is from October 2007 to December 2017. The training is updated recursively every quarter by expanding the training period,
and the testing period is a quarter ahead in the future. All the statistics are computed over the out-of-sample prediction period from January 2018 to Dec. 2023.

Random Forest Gradient Boosting OLS Elastic Net Deep Neural Network
DepVar PredVar CV  Rpos, Rpos,  DepVar PredVar CV  Rpos, Rpos,  DepVar PredVar CV  Rpos, Rpos,  DepVar PredVar CV  Rpog, Rpos,  DepVar PredVar CV  Rpos, Rios,
Panel I: S&P500 benchmark index
L.A. Decile portfolios
1 333 328 024 013 0.12 3.29 337 024 -0.04 -0.06 3.37 373 024 -009 -029 3.37 374 024 -008 -0.29 3.32 347 025 003 -0.01
2 3.71 3.60 0.21 0.20 0.18 3.70 3.80 020 0.13 0.11 3.68 3.88 0.20  0.05 -0.03 3.68 3.88 020 0.06 -0.01 3.71 3.82 0.20  0.00 -0.02
3 3.88 376 0.19 024 0.21 3.86 396 019 0.2 0.10 3.85 395 019 007 0.05 3.85 395 019  0.09 0.07 3.85 398 0.19 0.09 0.06
4 3.98 3.88 0.19  0.25 0.23 3.98 4.08 0.19 0.14 0.13 3.98 4.01 0.19  0.08 0.08 3.98 4.02 0.19  0.09 0.09 3.98 4.10 0.19  0.10 0.08
5 4.11 399 019 027 0.25 4.11 417 018 0.16 0.15 4.09 407 019 0.2 0.12 4.09 407 019 0.3 0.13 4.11 420 018 0.2 0.10
6 422 4.10 0.18 025 0.22 4.22 4.27 0.18  0.13 0.12 4.20 4.14 0.18  0.15 0.14 421 4.14 0.18  0.15 0.14 4.22 4.30 0.18  0.15 0.14
7 4.35 422 018 026 0.23 4.35 439 018 0.8 0.17 4.35 423 018 0.5 0.12 4.35 422 018 0.16 0.13 4.35 441 018 0.19 0.18
8 4.53 436 0.8 027 0.23 4.54 454 017 0.8 0.18 4.54 435 018 0.8 0.12 4.54 434 018 0.19 0.13 4.52 456 018 023 0.23
9 4.81 4.56 0.17  0.26 0.16 4.82 4.74 0.16 021 0.20 4.80 4.55 0.16  0.20 0.10 4.80 4.55 0.16 021 0.10 4.82 4.76 0.16 0.25 0.25
10 537 494 016 034 0.07 5.42 518 015 030 0.22 5.42 536 015 -049 -049 542 536 015 -050 -0.50 5.41 510 016 036 0.23
L.B. Quintile portfolios
1 3.52 344 023 020 0.19 3.50 359 023 010 0.09 3.52 380 023 -000 -0.13 3.52 381 023 001 -0.12 351 3.65 023 0.07 0.04
2 3.93 3.82 0.19 025 0.22 3.92 4.02 0.19  0.14 0.12 3.92 3.98 0.19  0.08 0.07 391 3.98 0.19  0.09 0.08 3.92 4.04 0.19  0.10 0.08
3 4.16 4.04 018 027 0.24 4.16 422 018 0.5 0.14 4.15 411 019 0.14 0.14 4.15 411 019 0.14 0.14 4.16 425 018 0.14 0.13
4 4.44 429  0.18 028 0.24 4.44 446  0.18 0.19 0.19 4.44 428 0.8 0.17 0.14 4.44 428 0.18 0.18 0.15 4.43 448 018 022 0.22
5 5.09 4.75 0.17  0.36 0.21 5.11 4.96 0.17  0.34 0.31 5.11 4.95 0.17  -0.02 -0.05 5.11 4.95 0.17  -0.02 -0.06 5.11 4.93 0.17  0.37 0.33
1.C. Tercile portfolios
1 3.67 3.57 022 0.25 0.24 3.65 3.74 022 0.16 0.14 3.66 3.87 022 0.06 -0.01 3.66 3.87 022  0.07 -0.00 3.65 3.79 022 0.12 0.10
2 4.16 4.04 019 027 0.25 4.16 422 018 0.17 0.16 4.15 411 019 0.4 0.14 4.15 411 019 0.5 0.15 4.16 425 018 0.16 0.14
3 4.85 4.58 0.18 0.39 0.30 4.87 4.78 0.18 036 0.35 4.86 4.70 0.18 0.16 0.12 4.87 4.70 0.18  0.16 0.13 4.86 477 0.18 038 0.37
All 423 4.07 023 048 0.45 4.23 4.25 023 044 0.44 423 423 023 033 0.33 4.23 4.23 023 033 0.33 4.23 4.27 023 043 0.43
Panel II: S&P400 benchmark index
II.A. Decile portfolios
1 2.70 225 032 -007 -035 2.72 230 032 -0.17 -0.40 2.65 2.80 032 -0.06 -0.08 2.64 2.81 033 -003 -0.07 2.68 253 032 -012 -0.14
2 297 2.53 0.28 -0.01 -0.30 297 2.61 028 -0.16 -0.35 2.88 2.96 0.28 -0.00 -0.01 2.88 2.96 028  0.03 0.02 2.86 2.89 028 -0.14 -0.15
3 3.13 268 027 0.02 -0.27 3.10 276 027 -0.08 -0.24 3.05 306 026 0.02 0.02 3.04 306 026 0.06 0.06 3.07 310 026 -0.10 -0.10
4 3.24 2.79 0.26  0.05 -0.25 3.19 2.87 025  -0.09 -0.25 3.18 3.15 0.25  0.05 0.05 3.18 3.16 025 0.07 0.06 3.18 3.25 025 -0.07 -0.07
5 3.36 288 025 007 -0.26 3.32 298 024 -010 -0.28 3.30 325 024 004 0.03 3.30 325 024 007 0.07 3.32 335 023 -0.03 -0.03
6 3.46 297 023 0.1 -0.26 3.40 3.08 024 -006 -022 341 334 023 007 0.06 341 334 023 008 0.07 341 344 023 -002 -0.02
7 3.53 3.04 0.23  0.10 -0.26 3.51 3.17 023 -0.10 -0.26 3.53 3.45 0.22  0.03 0.02 3.53 3.44 022  0.08 0.07 3.53 3.54 0.21 0.03 0.03
8 3.59 312 023 0.1 -0.22 3.63 327 022 -009 -0.30 3.67 358 021 0.02 0.00 3.67 358 020 0.06 0.05 3.67 3.63 021 0.03 0.03
9 3.68 3.21 0.21 0.10 -0.26 3.75 3.37 021 -0.08 -0.32 3.82 3.75 0.19  -0.06 -0.07 3.82 3.75 0.19 -0.01 -0.02 3.79 3.74 0.21 0.08 0.08
10 379 339 020 0.07 -0.22 3.88 357 019 -0.10 -0.27 3.99 414 019 -017 -0.21 3.99 413 020 -0.13 -0.16 3.95 390 020 0.13 0.13
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Table 5: Out-of-sample measures of prediction performance (continued)
This table shows goodness-of-fit summary statistics of the machine learning models. The dependent variable is the logarithm of SAS value, and predictors are
macrovariables and stock characteristics summarized in Table 4. We consider using each benchmark index separately. The following summary statistics are
displayed: Quantile (decile, quintile, tercile) portfolio number, coefficient of variation of the dependent variable (CV), modified out-of-sample r-squared (R, Sur)
defined in equation (5), traditional out-of-sample r-squared (R%, s,.) defined in equation (4). Quantile portfolios are formed by sorting stocks based on the predicted
variable. The initial training period is from October 2007 to December 2017. The training is updated recursively every quarter by expanding the training period,
and the testing period is a quarter ahead in the future. All the statistics are computed over the out-of-sample prediction period from January 2018 to Dec. 2023.

Random Forest Gradient Boosting OLS Elastic Net Deep Neural Network
DepVar PredVar CV  Rpos.  Rios, DepVar PredVar CV  Rpos,,  Ros, DepVar PredVar CV  Rpos, Ryos, DepVar PredVar CV  Rpns.  Rpos, DepVar PredVar CV  Rpos, Rpos,
Panel II : S&P400 benchmark index
IL.B. Quintile portfolios
1 2.84 239 030 -0.02 -0.29 2.84 245 030 -0.15 -0.35 2.76 2.88 030 -0.01 -0.03 2.76 2.88 030 0.01 -0.01 2.77 271 030 -0.13  -0.13
2 3.18 2.73 0.26  0.04 -0.25 3.14 2.82 026 -0.08 -0.24 3.11 3.11 0.26  0.04 0.04 3.11 3.11 026  0.07 0.07 3.13 3.17 0.26  -0.08 -0.08
3 341 293 024 0.09 -0.25 3.36 3.03 024 -008 -025 335 329 023 0.06 0.05 3.36 329 023 0.08 0.07 3.36 340 023 -0.02 -0.02
4 3.56 3.08 0.23  0.10 -0.24 3.57 322 023 -0.08 -0.27 3.60 3.51 0.21  0.03 0.02 3.60 3.51 0.21 0.08 0.06 3.60 3.58 0.21 0.04 0.04
5 3.74 330 021  0.09 -0.24 3.82 347 020 -0.09 -0.29 3.90 394 019 -012  -0.13 3.90 394 020 -0.08 -0.08 3.87 382 020 0.11 0.11
11.C. Tercile portfolios
1 2.96 251 029 003 -0.24 2.95 258 029 -0.09 -027 2.89 296 029 0.03 0.02 2.88 296 029 0.06 0.05 2.90 2.87 029 -0.08 -0.08
2 3.40 292 024 010 -0.23 335 3.03 024 -008 -0.24 335 329 024 007 0.06 335 329 023 0.09 0.08 3.36 339 023  0.00 -0.00
3 3.68 322 022 0.10 -0.23 3.73 3.38 021  -0.07 -0.27 3.80 3.79 0.20 -0.04 -0.04 3.79 3.78 020  0.00 0.00 3.78 3.74 0.21 0.10 0.10
All 334 2.88 026  0.18 -0.10 3.34 3.00 026  0.06 -0.10 3.34 3.34 026 0.19 0.19 3.34 3.34 026 022 0.22 3.34 3.33 026 0.17 0.17
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Table 6: Investment Performance of Machine Learning Algorithms - with quarterly rebalancing.
This table shows the performance of the machine learning based SAS investment strategy. The Strategy consists of predicting stock future SAS value based on its
characteristics at time ¢, then sorting the stocks into quantile portfolios, and taking a long position in top quantile portfolios composed of stocks with the highest
predicted SAS values. The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural
network (DNN). We also use analyst recommendation consensus (AR) to form the portfolio in a similar fashion to the SAS strategy, and the results are presented
in the AR columns. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real value of stocks SAS values as computed from
observed data. The formed portfolio is held for three months, it is rebalanced in the beginning of the next quarter, and the investment runs from January 2018 to

December 2023.
Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA Index
Panel I: S&P500 benchmark index

Mean 1.315 1.345 1.344 1.357 1.390 1414 1.420 1.366  1.390 1.359 1.369 1.394 1.354 1.396 1.335 1400 1376 1.381 1.368 1.343 1.371 1.089
Std. Dev. 5.175 5.003 4949 4.953 5.015 5.884 5.698 5.126 5.107 5.114 5.132 5.099 5.770 5.789 5306 5.221 5.224 5.230 5.235 5.770 5.718 5.213
Sharpe Ratio 0.225 0.239 0.241 0.244 0.248 0.215 0.223 0.237 0.243 0.237 0.238 0.244 0.209 0.215 0.223 0239 0.235 0.236 0.233 0.207 0.214 0.180
Skew -0.091 -0.223 -0.181 -0.190 -0.177 -0.062 -0.061 -0.039 -0.116 -0.113 -0.113 -0.085 -0.272 -0.171 -0.068 -0.106 -0.112 -0.110 -0.116 -0.166 -0.199 -0.370
Kurtosis -0.289 -0.092 -0.185 -0.192 -0.288 0.650 -0.204 -0.176  -0.191 -0.136 -0.169 -0.158 0.817 -0.094 -0.101 -0.117 -0.103 -0.093 -0.095 0.481 0.048 -0.206
Adjusted Sharpe Ratio 0.225 0.237 0.240 0.242 0.246 0.214 0.223 0.237 0.242 0.236  0.237 0.243 0.206 0.214 0.223 0.238 0.234 0.235 0.232 0.205 0.212 0.178
Alpha 0.222 0.312 0277 0.291 0.348 0.309 0.438 0.296 0.332 0.291 0.298 0.346 0.280 0.398 0.263 0.351 0.322 0.324 0.322 0.241 0.368 0.004
s.e.(alpha) 0.098 0.069 0.081 0.082 0.072 0.145 0.124 0.089 0.079 0.083 0.085 0.090 0.121 0.108 0.103 0.095 0.086 0.088 0.084 0.110 0.116 0.028
Panel II: S&P400 benchmark index

Mean 1.605 1.552 1.807 1.768 1.739 1.279 1.967 1.644 1.666 1.766 1.745 1.700 1.402 1.819 1.626  1.652 1.695 1.700 1.674 1.442 1.641 0.906
Std.Dev. 6.377 6.022 6.310 6.311 6.120 6.629 6.023 6.471  6.292 6.399 6.398 6.280 6.748 6.118 6.397 6.413 6481 6.499 6.402 6.825 6.089 6.838
Sharpe Ratio 0.228 0.233 0.262 0.256 0.260 0.170 0.302 0.231 0.241 0.253 0.249 0.247 0.186 0.273 0.231 0.234 0.238 0.238 0.238 0.189 0.245 0.111
Skew -0.217 -0.173 -0.063 -0.048 -0.025 -0.302 -0.112 -0.179 -0.135 -0.075 -0.065 -0.021 -0.196 -0.126 -0.108 -0.103 0.012 0.043 -0.065 -0.136 -0.225 -0.515
Kurtosis 0.183 -0.341 -0.318 -0.292 -0.214 0.080 -0.360 -0.062 -0.251 -0.319 -0.331 -0.276 0.032 -0.319 0.045 -0.112 0.114 0.149 0.079 0.229 -0.234 1.377
Adjusted Sharpe Ratio 0.226 0.231 0.262 0.256 0.260 0.169 0.300 0.229 0.240 0.252 0.249 0.247 0.184 0.271 0.230 0.233 0.238 0.239 0.237 0.188 0.243 0.110
Alpha 0.471 0.551 0.709 0.683 0.684 0.178 0.887 0.511  0.600 0.663 0.642 0.616 0.335 0.731 0.522  0.595 0.590 0.588 0.578 0.345 0.584 -0.060
s.e.(alpha) 0.180 0.194 0.208 0.216 0.198 0.251 0.214 0.187 0.211 0.211 0.203 0.198 0.206 0.183 0.134 0.187 0.181 0.186 0.182 0.141 0.152 0.131
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Table 7: Additional Investment Performance Measures of Machine Learning Algorithms - with quarterly rebalancing.

This table shows additional performance measures of the machine learning based investment strategy to account for downside risks. The Strategy consists of
predicting stock future SAS value based on its characteristics at time ¢, then sorting the stocks into quantile portfolios, and investing in top quantile portfolios
composed of stocks with the highest predicted SAS values. The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS),
elastic net (ENET), deep neural network (DNN). We also use analyst recommendation consensus (AR) to form the portfolio in a similar fashion to the SAS strategy,
and the results are presented in the AR columns. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real value of stocks SAS
values as computed from observed data. The formed portfolio is held for three months, it is rebalanced in the beginning of the next quarter, and the investment runs
from January 2018 to December 2023.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA Index
Panel I: S&P500 benchmark index

Sortino 0.373 0.391 0.396 0.400 0.411 0.351 0.377 0.402 0.409 0.393 0.396 0.411 0.330 0.354 0.374 0.403 0.393 0.394 0.389 0.332 0.349 0.275
Info Ratio 0.240 0.393 0.328 0.343 0.411 0.235 0.273 0.316 0.393 0.342 0.344 0.375 0.257 0.306 0.288 0.396 0.373 0.384 0.376 0.242 0.309 0.016
Drawdown 0.232 0.214 0.238 0.238 0.222 0.218 0.224 0.200 0.186 0.207 0.206 0.199 0.260 0.227 0.202 0.191 0.195 0.197 0.201 0.243 0.234 0.243
VaR 0.095 0.095 0.089 0.089 0.091 0.117 0.107 0.089 0.095 0.092 0.091 0.091 0.120 0.115 0.099 0.098 0.099 0.099 0.098 0.116 0.115 0.103
Turnover 0.474 0.437 0433 0.433 0435 0.481 0.489 0.422 0.412 0.407 0.406 0.402 0.430 0.456 0.377 0.368 0.365 0.364 0.362 0.370 0.387 0.462
Panel II: S&P400 benchmark index

Sortino 0.373 0.390 0.460 0.448 0.457 0.264 0.538 0.384 0.409 0.439 0.434 0.432 0.295 0.474 0.387 0.396 0.412 0.414 0.406 0.303 0.408 0.161
Info Ratio 0.263 0.282 0.362 0.356 0.375 0.089 0.405 0.314 0.339 0.369 0.362 0.360 0.207 0.396 0.375 0.371 0.387 0.382 0.383 0.258 0.382 -0.054
Drawdown 0.245 0.207 0.204 0.215 0.185 0.273 0.230 0.241 0.208 0.206 0.205 0.198 0.271 0.222 0.250 0.244 0.233 0.230 0.242 0.277 0.230 0.354
VaR 0.130 0.119 0.120 0.119 0.115 0.148 0.105 0.126 0.124 0.128 0.127 0.125 0.148 0.114 0.123 0.125 0.125 0.125 0.127 0.142 0.119 0.153

Turnover 0.625 0.619 0.581 0.582 0.581 0.539 0.564 0.553 0.554 0.523 0.524 0.527 0.478 0.509 0.479 0.473 0446 0.446 0.449 0.423 0.431 0.382




Table 8: Linear Panel Regression Models of SAS values due to Carbon Emissions Level and Intensity

This table shows the regressions of logarithm of SAS measure (the dependent variable) on logarithm of carbon emission intensity (Panel A) or on logarithm of
carbon emission level (Panel B). Carbon emission intensity is computed as the ratio of CO5 emission (scope 1 & 2) to stock market capitalization. The panel data
runs from 2016 to 2023. Standard errors are clustered at stock level. FE stands for fixed effects. *, **, and *** denote respectively a p-value lower than 0.1, 0.05,
and 0.01.

Panel A: Carbon Intensity is the main explanatory variable

(4%

S&P400 S&P500
@ (@) 3 @ @ 3

Emission Intensity —0.029*** —0.110** —0.113*** —0.052%* —0.116"* —0.142%

(0.005) (0.014) (0.015) (0.005) (0.020) (0.023)
Constant 3.926™ 4.688"** 4.590** 5.207* 6.828** 7.856"**

(0.076) (0.239) (0.262) (0.076) (0.433) (0.555)
Stock FE NO YES YES NO YES YES
Time FE NO NO YES NO NO YES
Observations 1,798 1,798 1,798 2,182 2,182 2,182
R? 0.017 0.803 0.813 0.049 0.896 0.904
Adjusted R? 0.016 0.714 0.727 0.048 0.866 0.875
Residual Std. Error 0.559 (df = 1796) 0.301 (df = 1235) 0.294 (df = 1228) 0.662 (df = 2180) 0.248 (df = 1691) 0.240 (df = 1682)
F Statistic 30.631™* (df = 1; 1796)  8.983** (df = 562; 1235)  9.403*** (df = 569; 1228) 229.461™* (df = 1;2550)  13.112*** (df = 740; 1811)  13.673*** (df = 747; 1804)

Panel B: Carbon Emission is the main explanatory variable

S&P400 S&P500
1) (2) 3) 1 (2 (3)

Emission Level 0.002 0.004 —0.003 0.015** 0.055*** 0.047**

(0.005) (0.014) (0.013) (0.005) (0.016) (0.016)
Constant 3.450*** 3.026*** 3.020%** 4,028 2.601** 3.204***

(0.123) (0.340) (0.337) (0.118) (0.505) (0.514)
Stock FE NO YES YES NO YES YES
Time FE NO NO YES NO NO YES
Observations 1,798 1,798 1,798 2,182 2,182 2,182
R? 0.0001 0.791 0.801 0.004 0.892 0.897
Adjusted R? —0.0005 0.696 0.708 0.004 0.861 0.866
Residual Std. Error 0.563 (df = 1796) 0.311 (df = 1235) 0.304 (df = 1228) 0.677 (df = 2180) 0.253 (df = 1691) 0.248 (df = 1682)
F Statistic 0.130 (df = 1; 1796) 8.310** (df = 562; 1235)  8.664*** (df = 569; 1228) 111.976*** (df = 1; 2180)  29.834*** (df = 490; 1691)  31.602*** (df = 499; 1682)




I. Number of stocks from benchmark held by Mutual funds

LA. S&P500 1.B. S&P400

|

Number of stocks from benchmark held by Mutual funds

Number of stocks from benchmark held by Mutual funds

0

0
2007 2009 2011 2013 2015 2017 2019 2021 2023 2007 2009 2011 2013 2015 2017 2019 2021 2023
Date Date

II. Cumulative weights in percentage of stocks appearing in mutual fund holdings from the benchmark

IL.A. S&P500 IL.B. S&P400

g

T
|

Cumulative weights of stocks (%)

Cumulative weights of stocks (%)

0

2007 2009 2011 2013 2015 2017 2019 2021 2023 2007 2009 2011 2013 2015 2017 2019 2021 2023
Date Date
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Figure 1: Stocks’ holding and mutual funds portfolios’ disclosures through time.

This figure presents the time series of number of stocks from the benchmark disclosed by at least on mutual fund (I),
the cumulative percentage weight of disclosed stocks in the benchmark portfolio (II), and the number of mutual funds
disclosing their portfolios with at least one stock from the benchmark (III).
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Figure 2: Out-of-sample (Top portfolios) SAS Strategy Cumulative Returns and Cumulative Alphas - with quarterly rebalancing.
This figure presents the evolution of cumulative returns (I.) and cumulative alphas (II.) of machine learning-based SAS portfolios for different benchmark indices
(SP400 and S&P500). We form the machine learning-based SAS portfolios using five different prediction models: OLS, elastic net, random forest, gradient boosting,
and deep neural networks. The portfolios are formed every quarter by selecting the top 10 percent of stocks with the highest predicted SAS values. Selected stocks
are weighted based on their predicted SAS values in the portfolio. The out-of-sample prediction period goes from January 2018 to December 2023.
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Figure 3: Correlation Matrices between predicted SAS measures and Analyst Recommendation Consensus - quarterly rebalancing.
This figure presents the correlations between the machine learning-predicted SAS measures, SAS-Oracle measures, and analyst recommendation consensus for two
different benchmark indices (SP500 and S&P400). The latter aggregates analyst recommendations for Strong Buy (value between 1&1.49), Buy (value between
1.5&2.49), Hold (value between 2.583.49), Underperform (value between 3.584.49), and Sell (value between 4.5&5). The SAS-Oracle measures (ORACLE) are
the real value of stocks SAS values as computed from observed data. The prediction of the SAS measure uses different machine learning algorithms: random forest
(RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), and deep neural network (DNN). Every quarter, we expand the training sample, and
the prediction period spans from January 2018 to December 2023. We have tested all the correlations and found that they are statistically different from zero.
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Figure 4: Feature Importance in the MLSAS strategy with quarterly rebalancing.

This figure presents aggregate feature importance computed by aggregating the thirty most important features across
all entities in the test sample. Roughly the one-third most important variables for making the prediction. Results are
displayed for each benchmark index (SP400 and S&P500) and various machine learning models: random forest (I.),
elastic net (II.), and deep neural network (III.). Refer to Table 4 for variables definition. sum_tilt_by_stock is the

lagged dependent variable.
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EXTERNAL APPENDIX of “Learning from the Wisdom of
Mutual Fund Managers”

This supplemental appendix for “Learning from the Wisdom of Mutual Fund Managers” pro-
vides additional tables and figures that complement the analysis presented in the main text either
with more detailed information about the data used in the main analysis, or by using alternative

datasets for robustness checks.
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Performance of the SAS-Oracle strategy - with monthly rebalancing. This table
shows the performance of the SAS-Oracle strategy implemented by using the real value of stocks
SAS values as computed from observed data. The strategy consists of using computed the market-
wide absolute deviation from the benchmark for each stock based on its characteristics at time t as
if it was known, then sorting the stocks into quantile portfolios based on their computed SAS, and
computing the return of the formed portfolios for the next period ¢ + 1. Oracle portfolios are formed
using ex-ante the observed (ex-post) measure of stocks’ SAS computed using mutual fund holdings

when released to sort stocks into quantile portfolios and to equally weight them. The evaluation

period goes from October 2007 to December 2023. . . . . . . . . . . . . . .. ...

Investment Performance of Machine Learning Algorithms - with monthly
rebalancing. This table shows the performance of the machine learning based SAS investment
strategy. The Strategy consists of predicting stock future SAS value based on its characteristics at
time t, then sorting the stocks into quantile portfolios, and taking a long position in top quantile
portfolios composed of stocks with the highest predicted SAS values. The prediction methods are
random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep
neural network (DNN). We also use analyst recommendation consensus (AR) to form the portfolio
in a similar fashion to the SAS strategy, and the result are presented in the AR columns. ORA
columns show the statistics for the SAS-Oracle strategy implemented by using the real value of
stocks SAS values as computed from observed data. The formed portfolio is rebalanced in the
beginning of each month, and the investment runs from January 2018 to December 2023. The
SAS variable used in the machine learning model is the continuous variable of stock market-wide

absolute deviation from benchmark that we computed using the mutual funds’ holdings of stock.
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Additional Investment Performance Measures of Machine Learning Algo-
rithms - with monthly rebalancing. This table shows the performance of the machine
learning based investment strategy. The Strategy consists of predicting stock future SAS value
based on its characteristics at time ¢, then sorting the stocks into quantile portfolios, and investing in
top quantile portfolios composed of stocks with the highest predicted SAS values. The prediction
methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net
(ENET), deep neural network (DNN). We also use analyst recommendation consensus (AR) to
form the portfolio in a similar fashion to the SAS strategy, and the results are presented in the AR
columns. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the
real value of stocks SAS values as computed from observed data. The formed portfolio is held
for one month, it is rebalanced in the beginning of the next month, and the investment runs from
January 2018 to December 2023. The SAS variable used in the machine learning model is the

continuous variable of stock market-wide absolute deviation from benchmark that we computed

using the mutual funds’ holdingsof stock. . . . . . . . . . . . ..o oL

Test of difference in Performance between investment strategies based on SAS
and Analysts recommendations - with quarterly rebalancing. This table compares
the performance of the SAS-based (oracle and machine learning predictions) investment strategies to
the one based on analyst recommendations. The prediction methods are random forest (RF), gradient
boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural network (DNN). We
compute and test the difference in mean return, Sharpe ratio, and alpha (using the Fama-French 5
factor model + Momentum) between investment strategies based on the previously cited methods
and on analyst recommendation consensus. ORA columns show the statistics for the SAS-Oracle
strategy implemented by using the real value of stocks SAS values as computed from observed data.
ORA;, ORA,, and ORA; are respectively for the SAS-Oracle strategies implemented by using the
real value of stocks SAS lagged by one, two, and three months respectively. The formed portfolio

is held for one quarter, it is rebalanced in the beginning of the next quarter, and the investment runs
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returns (I.) and cumulative alphas (II.) of SAS-Oracle portfolios for different benchmark indices
(SP500 and S&P400). We form the SAS-Oracle portfolios every quarter by sorting stocks into
decile portfolios based on their previous month measure of absolute deviation from benchmark

(SAS). Selected stocks are weighted based on their SAS values in the portfolio. The evaluation
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Stocks in the SAS portfolio by Benchmark index. This figure presents a word cloud
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between the machine learning-predicted SAS measures, SAS-Oracle measures, and analyst rec-
ommendation consensus for two different benchmark indices (S&P500, and S&P400). The latter
aggregates analyst recommendations for Strong Buy (value between 1&1.49), Buy (value between
1.5&2.49), Hold (value between 2.5&3.49), Underperform (value between 3.5&4.49), and Sell
(value between 4.5&5). The SAS-Oracle measures (ORACLE) are the real value of stocks SAS
values as computed from observed data. The prediction of the SAS measure uses different machine
learning algorithms: random forest (RF), gradient boosting (GB), ordinary least squares (OLS),
elastic net (ENET), and deep neural network (DNN). Every month, we expand the training sample,

and the prediction period spans from January 2018 to December 2023. We have tested all the
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Out-of-sample (Top portfolios) SAS Strategy Cumulative Returns and Cu-
mulative Alphas - with monthly rebalancing. This figure presents the evolution of
cumulative returns (I.) and cumulative alphas (II.) of machine learning-based SAS portfolios for
different benchmark indices (SP400 and S&P500). We form the machine learning-based SAS port-
folios using five different prediction models: OLS, elastic net, random forest, gradient boosting,
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A Machine Learning Methods

In this section,we present a brief summary of the machine learning methods that we apply to predict
stocks’ SAS measures and to select stocks to form our investment portfolio. We use supervised
machine learning methods, the history of mutual fund holdings, and stock characteristics to learn
the decision rule of mutual fund managers. This means a function that mimics manager skills to
transform complex information about investor preferences, stock characteristics, and interactions
with macroeconomic conditions into a decision about whether or not to include the stock in the
mutual fund’s portfolio. We aim to build a model that predicts future stocks’ SAS values based on
current stocks’ characteristics. This approach stems from the idea that mutual fund managers used
their skills to select these stocks based on publicly available information.

Our supervised learning objective can be addressed both as a regression problem for predicting
a stock SAS measure or as a classification problem for predicting a stock selection or not into the
SAS strategy’s portfolio. The baseline model in the first case can be the ordinary least squares
regression (OLS) model of the SAS measure on lagged stock characteristics, while in the second
case we could use a logit or probit model to predict the probability of a stock being selected or
not as an overperforming stock given its past characteristics. We try OLS as a benchmark model
and various machine learning models such as Elastic Net (ENET), Random Forest (RF), Gradient
Boosting (GB), and Deep Neural Network (DNN).

Formally, let us consider y the target outcome variable, which in our case can be a continuous
variable of stock SAS measure or a binary variable of stock selection into an SAS-Oracle portfolio.
We denote by z the vector of predictors (stock characteristics, business cycle or macro variables).
We assume that there is an unobservable function f, we want to learn about, used by skilled

managers in order to pick stocks based on their characteristics; that means:

y = f() (A.1)

OLS model assumes that f is a linear function of characteristics, and estimates the model’s



parameters, denoted ¢, by minimizing the mean squared errors:

T By

0 =argmin >N (yi,t - a:;,ﬂ) i (A.2)

t=1 i=1

where y; ; is the logarithm of stock < measure of absolute deviation from benchmark at time ¢, ; ; is
the vector of predictors, and B, is the number of stock in the benchmark index at time ¢. Given the
observed values at time ¢ in the test sample of predictors used to train the model, and the estimated
parameters in the train sample, the outcome variable is predicted (out-of-sample) as a:;,té*. The

predicted values are then sorted to form the investment portfolios.

A.1 Elastic Net

Although the OLS model is simple to build and understand, it has a notable drawback that is
resolved by the elastic net model. Undoubtely, the OLS model is susceptible to data overfitting due
to its attempt to incorporate every single predictor. This results, especially with large number of
predictors, in a model that exhibits strong performance when evaluated with the data it was trained
on, but performs poorly when tested on new, unseen data. The elastic net method incorporates
regularization parameters to effectively reduce the values of estimated parameters and prioritize
predictors that significantly contribute to minimizing mean squared errors. The elatic net model

parameters are obtained as follows:

T B .9
0" =argmin ; ; <yi,t — :Ui’ﬁ) + A (al|f]ls + (1 —a)[0]2) (A.3)
Where A > 0 and « € [0, 1] are hyper-parameters set optimally by cross-validation. ||.||; and

||.]|2 denote the L;-norm and L,-norm respectively. The elastic net objective function ecompasses
the least absolute sum of squares operator (LASSO) regression (when o = 1) and the ridge

regression (when o = 0) as special cases.



A.2 Random Forest

OLS and Elastic net both assume a linear function of the predictors to fit the managers conviction
about a stock value, but they do not account for possible non-linearities or interactions between
predictors. Decision trees model incorporates multiway predictor interactions. It assume that the
functional form is as follows:

f@) =) cmlewern), (A.4)

1[1=

where 1) is the indicator function, and Ry, ..., R represent a partition of feature space into M
regions based on predictors and split points. M is an hyper-parameter set by cross-validation. The
parameter c,,, form = 1, ..., M, is simply estimated as the average of previous realizations y; such

that x; belongs to Rz, as follows:

T T
1 R,
én =argmin Y 1(z; € Ry) (yr — cm)” = Et=T1 (21 € Bm) Y1 (A.5)
o t=1 >im1 (@ € Ry)

Decision trees suffer from high variance of the predicted output. Random forest resolved this
problem by bootstrapping the original data and averaging predictions across decorrelated decision
trees. The decorrelation of decision trees is achieved by using only a random subset of predictors for
building the trees each time a split in a tree is considered. This is done for the purpose of generating
variability across the boostrap decision trees, thereby making the average of the resulting trees less

variable and hence more reliable.

A.3 Gradient Boosting

Similarly to random forests, gradient boosting is based on decision trees. But instead of aggregating
the predictions of independent decision trees across bootstrap samples as done by random forest,
gradient boosting uses only the original data. It may start with a random guessing prediction

function and then sequentially update the prediction function by adding in a shrunken version of



the new decision tree to further reduce the pre-existing prediction error. That means we fit a tree
using the current residuals rather than the initial outcome variable as the response. As a result,
the gradient-boosting method starts with weak decision trees and converges to strong trees by
sequentially learning (from the previous tree) how to better fit the data by giving more weight to
those observations that are poorly predicted by the current aggregation of trees.

This learning process can result in data overfitting, particularly when the number of sequences
is enormous. To address this, cross validation is employed to determine the optimal number of
sequence iterations. The iterative enhancement of the prediction function and its sequential update
in the boosting decision tree mirror the sequential processing of data in the deep neural network to

minimize prediction errors.

A.4 Neural Network Model

A neural network model (NNM) is a combination of layers of nodes where each node linearly
combines information in predictor variables into an input supply to an activation function whose
outputs are linearly combined to match the observed target variable as closely as possible according
to a pre-specified distance.

A deep neural network with L hidden layers is an approximation to f(z) of the form:
My,
y=g(a;0) = ¢ |67+ 6D (A.6)
m=1
where (") (.) is an activation function>® in the output layer, M is the number of neurons in

the L (last) hidden layer, and ¥ € Rz*! is the sub-vector of network weights at layer L. For

le{l,..,L}and m € {1,..., Mg}, 2\ is the input information at layer [ coming from the

Z3Examples of activation functions include the following: The identity function (¢(z) = z), the sigmoidal function
often seen in logit model (¢(z) = H%), step function, the rectified linear unit (ReLU, ¢(z) = max(0, z) ), the
softplus function (¢(z) = log(1 + %)), etc.



previous layer and defined as follows:

v ) OO () S 60 e 2, 1)

" W (p® N ) T (A.7)
¢ 90 + anl Qn,mxn ifl=1

zZ

Mi-1+1) ig the vector

M; is the width of the network or number of neurons in the layer /. 6! € RM*(
of parameters in layer /; in total there are 1 + Hle(Ml + 1) parameters to estimate, and they are

chosen in order to minimize a loss (error) function when training the model as follows:
0" =arg main D (y, g(z;0)) (A.8)

Where D denotes a distance, such as the L,-norm or a divergence metric** between the distribution
of the observed data and the one predicts by the model. The initialization of the parameter 6 for
the optimization is made randomly and depends on the random number seed used in the algorithm.
Thus, depending on the chosen seed, the model’s estimated parameters and prediction may change.
Therefore, following Gu et al. (2020), we use an ensemble method in training and evaluating the
performance of our neural network. In particular, we use multiple random seeds to initialize neural

network estimation and construct predictions by averaging predictions from all networks.

B The MLSAS Investment Strategy with Monthly Rebalancing

Table A2 presents summary statistics on the financial performance of the MLSAS investment
strategy but with portfolio rebalancing at every month. The table displays three blocks (Top
10, Top 5, and Top 3) of five columns (RF, GB, OLS, ENET, and DNN) for different machine
learning models. Each block corresponds to a quantile (decile, quintile or tercile) portfolio used for
the MLSAS investment strategy. For comparison, columns AR and ORA, respectively, provide
summary statistics of the performance of similar strategies based on the analysts recommendation

consensus (AR) and the observed SAS measures (ORA) over the same investment period. The

24Common divergence metrics include Kullback-Leibler divergence and binary cross entropy.
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statistics are also provided for the benchmark indices used by a passive investor. Overall, it confirms
the patterns previously highlighted, especially regarding the overperformance of the RF and DNN
compared to the benchmark indices. However, the performance of the MLSAS investment strategy
is less impressive than in the case of quarterly rebalancing, in particular when compared to the
SAS-Oracle strategy. Indeed, we observe a decrease in the monthly average return achieved by the
ML-based SAS strategies, an increase in their standard deviations, and a reduction in the Sharpe
ratios; whereas the opposite is observed for the SAS-Oracle strategy displaying a higher average
return, a lower standard deviation, and a higher Sharpe ratio than with quarterly rebalancing.

The results indicate that Mutual funds often and effectively adjust their portfolio holdings by
deviating from the benchmark indices. For an Oracle investor, having real-time access to their port-
folio holdings and utilizing that information more frequently (monthly) in the SAS investing strategy
allows for superior performance compared to using that information less frequently (quarterly). As
a machine learning investor, it is not very profitable to frequently update the portfolio based on
predicted information. This is because the new information added to the training sample, when
done too often, is insufficient for the machine learning model to correctly update its parameters and
accurately predict the future values of stocks SAS measures. Instead, the prediction happens to be
more erratic and leads to a lower performance compared to quarterly rebalancing. During quarterly
rebalancing, mutual fund managers generate sufficient fresh information that allows the machine
learning model to accurately adjust its parameters.

Furthermore, as previously, we observe a similar deterioration in the performance of the strate-
gies as we move from a concentrate (top decile) to a more diversified (top tercile) portfolio holding.
In the case of BigCap stocks, the benchmark index overperforms some MLSAS investment strate-
gies (RF and GB), in terms of Sharpe ratio for the quintile portfolios, and it beats all the ML-based
tercile portfolios. In addition, the alpha generated by the MLSAS strategy is not statistically
different than zero, which confirms our view that the formed portfolios’ returns are too noisy to
be on average positive once we account for the common pricing factors. Given that rebalancing

occurs more frequently, implementing this ML-strategy with monthly rebalancing would certainly
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result in a negative net risk-adjusted return.

Table A3 similarly displays additional performance measures but for the monthly rebalancing
strategy. Overall, it corroborates our view that while MLSAS investment strategy with monthly
rebalancing overperforms the benchmark index, the achieved performance remains far below the
upper potential displayed by the SAS-Oracle strategy which leaves room for further improvements.

Figure B4 shows the correlations between analyst recommendation consensus and machine
learning-based predicted SAS measures for stocks in different benchmark indices over the period
from January 2018 to December 2023, when the machine learning training sample is updated
every month to predict the MLSAS value. We see a positive but low correlation between analyst
recommendation consensus and the various machine learning-based predicted SAS measures,
ranging from 0.1 to 0.3. OLS and Elastic Net predictions appear to be more correlated to analyst
recommendations than other non-linear machine learning predictions, and these correlations are
highest among BigCap stocks. We also observe that when the training sample updates more
frequently (monthly), the correlations between machine learning predicted SAS values and analyst
recommendation consensus are either higher or equal to those when the training sample updates
quarterly.

Similarly, the AR columns in Table A2 show the performance of the long-only investment
strategy based on analyst recommendations, but with portfolio rebalancing every month. The
results of the comparative performance between the AR strategy and the benchmark indices are
mitigated. For MidCap stocks, the AR strategy performs similarly to the benchmark index with
respect to various measures such as average return, standard deviation, and Sharpe ratio. Skewness
appears to be slightly worse for the benchmark portfolio than for the AR strategy. On the contrary,
the AR strategy for MidCap stocks has a higher kurtosis than the benchmark index. In both cases,
risk-adjusted returns are negative and not statistically different from zero. For BigCap stocks, the
AR strategy clearly underperforms compared to the benchmark index over the evaluation period.
The AR strategy’s average return and Sharpe ratio are lower than the benchmark index for all

portfolio quantiles, while its standard deviation is larger. Overall, the AR strategy with monthly
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rebalancing will generates a negative risk adjusted return after transaction cost, and would definitely

not be profitable to an investor.

C Additional tables

Table Al: Performance of the SAS-Oracle strategy - with monthly rebalancing.
This table shows the performance of the SAS-Oracle strategy implemented by using the real value of stocks SAS values
as computed from observed data. The strategy consists of using computed the market-wide absolute deviation from the
benchmark for each stock based on its characteristics at time t as if it was known, then sorting the stocks into quantile
portfolios based on their computed SAS, and computing the return of the formed portfolios for the next period ¢ + 1.
Oracle portfolios are formed using ex-ante the observed (ex-post) measure of stocks’ SAS computed using mutual fund
holdings when released to sort stocks into quantile portfolios and to equally weight them. The evaluation period goes
from October 2007 to December 2023.

Decile portfolio Quintile portfolio Tercile portfolio Benchmark

Statistics Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Index
Panel I: S&P500 benchmark portfolio

Mean -0.309 0.222 0506 0.837 0909 1277 1250 1.509 1.764 1.778 -0.016 0.676 1.097 1381 1.772 0222 1.119 1.644 0.864
Std. Dev. 7.503 6318 5914 5566 5211 5225 5.092 4916 4.651 4.224 6.730 5.642 5.155 4929 4.354 6.246  5.129 4.525 4.662
Sharpe Ratio -0.051 0.023 0.073 0.137 0.160 0230 0230 0291 0363 0.403 -0.013  0.106 0.198 0.265 0.390 0.024 0203 0.346 0.169
Skew -0.867 -0.295 0.012 -0.746 -0.495 -0.385 -0.312 -0.107 -0.277 -0.169 -0.569 -0.436 -0.441 -0.231 -0.239 -0.443  -0.446 -0.241 -0.554
Kurtosis 6428 3548 3787 3.094 1520 1.638 1472 0381 0.573 0.280 4498 3.048 1.531 0.652 0437 3.998 1.682 0.433 0.810
Adjusted Sharpe Ratio  -0.051  0.023  0.073  0.134 0.158 0226 0.227 0.289 0.356  0.398 -0.013  0.105 0.195 0261 0.382 0.024 0200 0.341 0.166
Alpha -1.350 -0.665 -0.450 -0.054 -0.018 0358 0.382 0.600 0911 0.963 -0.974 -0.246 0.174 0.492  0.940 -0.731 0222 0.782 -0.018
s.e (alpha) 0.224 0.133 0.155 0.113 0.099 0.101 0.102 0.098 0.104 0.092 0.159 0.113  0.079 0.082 0.081 0.127  0.074  0.060 0.017
Panel II: S&P400 benchmark portfolio

Mean -0.052 0372 0387 0.725 0.711 1.110 1.180 1.481 1951 2.869 0.194 0.561 0915 1334 2432 0322 0929 2.059 0.864
Std. Dev. 8.094 7.357 6542 6.192 6462 5981 5909 5.629 5539 5.325 7.550 6237 6.108 5.679 5.319 6.969 5967 5.386 5.886
Sharpe Ratio -0.016 0.040 0.048 0.105 0.098 0.173 0.187 0.249 0338 0.524 0.016 0.078 0.137 0.221 0.443 0.036  0.143  0.368 0.134
Skew 0.282 -0.239 -0.220 -0.357 -0.033 -0.223 -0.444 -0.353 -0.188 -0.021 -0.054 -0.387 -0.178 -0.414 -0.091 -0.128 -0.254 -0.209 -0.567
Kurtosis 6.713 4213 3476 1.798 3240 0986 1.656 0.774 0.742 0.357 5231 2228 1874 1.167 0475 4.185 1.816 0.526 2.033
Adjusted Sharpe Ratio  -0.016 0.040 0.048 0.104 0.098 0.172 0.184 0245 0.334 0.521 0.016 0.077 0.137 0217 0438 0.035 0.142 0362 0.132
Alpha -1.057 -0.652 -0.571 -0.225 -0.274 0.193 0202 0.562 1.007 1.924 -0.824 -0.393 -0.035 0.385 1.489 -0.677 -0.022  1.120 -0.067
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Table A2: Investment Performance of Machine Learning Algorithms - with monthly rebalancing.
This table shows the performance of the machine learning based SAS investment strategy. The Strategy consists of predicting stock future SAS value based on its
characteristics at time t, then sorting the stocks into quantile portfolios, and taking a long position in top quantile portfolios composed of stocks with the highest
predicted SAS values. The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural
network (DNN). We also use analyst recommendation consensus (AR) to form the portfolio in a similar fashion to the SAS strategy, and the result are presented
in the AR columns. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real value of stocks SAS values as computed from
observed data. The formed portfolio is rebalanced in the beginning of each month, and the investment runs from January 2018 to December 2023. The SAS variable
used in the machine learning model is the continuous variable of stock market-wide absolute deviation from benchmark that we computed using the mutual funds’

holdings of stock.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA Index
Panel I: S&P500 benchmark portfolio

Mean 1.017 1.050 1.189 1.174 1.174 0975 1.998 1.044 1.022 1.087 1.102 1.084 1.035 1.954 1.008 1.007 1.059 1.045 1.045 0.974 1.816 1.089
Std. Dev. 5.096 5056 5039 5.020 4.946 5993 4.864 5248 5.137 5.140 5.105 5.144 5931 4.861 5345 5297 5305 5313 5266 5922 5.019 5.213
Sharpe Ratio 0.170  0.178 0.207 0.204 0.207 0.138  0.380 0.171 0.170 0.182 0.187 0.182 0.149 0.371 0.161 0.162 0.172 0.169 0.170 0.139  0.332 0.180
Skew -0.392 -0.299 -0.282 -0.284 -0.215 -0.206 -0.124 -0.240 -0.223 -0.205 -0.215 -0.164 -0.391 -0.210 -0.245 -0.228 -0.239 -0.240 -0.254 -0.329 -0.147 -0.370
Kurtosis 0271 -0.178 -0.252 -0.235 -0.174 1.240 -0.364 0233 -0.109 -0.028 -0.084 0.043 1303 -0.210 0.181 0.059 0.077 0.065 0.172 0.992 -0.198 -0.206
Adjusted Sharpe Ratio 0.168 0.177 0.205 0.202 0.206 0.137 0.378 0.169 0.169 0.181 0.186 0.181 0.148 0.367 0.160 0.161 0.170 0.167 0.169 0.138 0.329 0.178
Alpha -0.008 0.027 0.123 0.110 0.151 -0.112 0.959 0.003 -0.018 0.004 0.023 0.031 -0.058 0.951 -0.032 -0.050 -0.015 -0.035 0.014 -0.130 0.793 0.004
s.e (alpha) 0.108 0.093 0.098 0.096 0.095 0.146 0.088 0.111 0.069 0.072 0.071 0.075 0.124  0.068 0.100 0.087 0.091 0.094 0.084 0.104 0.090 0.028
Panel II: S&P500 benchmark portfolio

Mean 1222 1.245 1.159 1.145 1.161 0.723 2.735 1.126  1.005 1.178 1.163 1.134 0.857 2.361 1.117  1.044 1.176 1.168 1.114 0.825 2.009 0.906
Std. Dev. 6.570 6.574 6350 6.330 6462 6.739 5.868 6.476 6.443 6.556 6.528 6.490 6.794 5.871 6.557 6.548 6.597 6.618 6.539 6941 6.044 6.838
Sharpe Ratio 0.163  0.167 0.159 0.157 0.157 0.085 0.440 0.151 0.133 0.157 0.155 0.152 0.104 0.376 0.147  0.137 0.156 0.154 0.147 0.097 0.307 0.111
Skew -0.151 -0.122 -0.082 -0.051 -0.089 -0.369 -0.169 -0.097 -0.147 -0.111 -0.126 -0.143 -0.341 -0.049 -0.289 -0.219 -0.143 -0.131 -0.184 -0.352 -0.156 -0.515
Kurtosis -0.230 -0.081 -0.115 -0.167 -0.221 0.468 -0.258 -0.158 -0.221 -0.196 -0.154 -0.169 0.405 -0.313 0.226 0.027 0.232 0.224 0.209 0.969 -0.210 1.377
Adjusted Sharpe Ratio 0.163 0.166 0.159 0.157 0.156 0.085 0.435 0.150 0.133 0.157 0.155 0.151 0.103 0.376 0.146  0.136  0.155 0.153 0.147 0.097 0.305 0.110
Alpha 0.072 0.145 0.138 0.086 0.151 -0.408 1.667 0.066 -0.072 0.103 0.092 0.070 -0.229 1.294 0.031 -0.066 0.067 0.056 0.013 -0.261 0.961 -0.060
s.e (alpha) 0233 0.197 0.179 0.205 0.246 0.213 0.215 0.181 0.169 0.171 0.170 0.190 0.197 0.162 0.150 0.150 0.167 0.167 0.160 0.157 0.152 0.131
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Table A3: Additional Investment Performance Measures of Machine Learning Algorithms - with monthly rebalancing.

This table shows the performance of the machine learning based investment strategy. The Strategy consists of predicting stock future SAS value based on its
characteristics at time ¢, then sorting the stocks into quantile portfolios, and investing in top quantile portfolios composed of stocks with the highest predicted SAS
values. The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural network (DNN). We
also use analyst recommendation consensus (AR) to form the portfolio in a similar fashion to the SAS strategy, and the results are presented in the AR columns.
ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real value of stocks SAS values as computed from observed data. The
formed portfolio is held for one month, it is rebalanced in the beginning of the next month, and the investment runs from January 2018 to December 2023. The SAS
variable used in the machine learning model is the continuous variable of stock market-wide absolute deviation from benchmark that we computed using the mutual
funds’ holdings of stock.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA Index
Panel I: S&P500 benchmark portfolio

Sortino 0.259 0.275 0326 0321 0331 0210 0.716 0.266 0.265 0287 0.295 0287 0.225 0.682 0248 0.251 0.267 0.262 0.264 0209 0.599 0.275
Info.Ratio -0.009 0.031 0.138 0.129 0.162 -0.077 1.016 0.003 -0.023 0.005 0.029 0.034 -0.054 1.090 -0.037 -0.058 -0.018 -0.039 0.016 -0.137 0.873 0.016
Drawdown 0.252 0.260 0.271 0271 0.243 0.258 0.154 0222 0.226 0245 0.242 0223 0.289 0.162 0225 0223 0.227 0229 0.223 0276 0.171 0.243
VaR 0.104 0.098 0.099 0.099 0.096 0.128 0.079 0.104 0.102 0.102 0.100 0.103 0.129 0.087 0.108 0.107 0.106 0.107 0.108 0.130 0.090 0.103
Turnover 0983 0.959 0.941 0930 0953 0.868 0.888 0.931 0.889 0.890 0.885 0913 0.758 0.833 0.836 0.806 0.796 0.793 0.823 0.634 0.750 1.147
Panel II: S&P400 benchmark portfolio

Sortino 0.258 0.267 0.254 0252 0.250 0.123 0.861 0.238 0.206 0249 0.245 0238 0.153 0.725 0226 0210 0.245 0242 0.228 0.142 0.544 0.161
Info.Ratio 0.035 0.084 0.077 0.046 0.075 -0.233 0.728 0.039 -0.043 0.063 0.057 0.044 -0.159 0.753 0.022 -0.046 0.048 0.040 0.010 -0.214 0.657 -0.054
Drawdown 0.220 0.237 0.230 0.220 0.239 0.365 0.153 0.241 0.255 0237 0.238 0241 0.350 0.167 0.272 0280 0.266 0266 0.263 0.350 0.211 0.354
VaR 0.132 0.133 0.128 0.125 0.135 0.161 0.103 0.131 0.130 0.135 0.134 0.136 0.163 0.095 0.141 0.138 0.134 0.134 0.140 0.163 0.111 0.153

Turnover 1.626 1.532 1475 1.466 1.523 1209 1.404 1.410 1348 1298 1.299 1348 1.090 1.255 1.177 1.129 1.087 1.086 1.120 0918 1.055 1.385
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Table A4: Test of difference in Performance between investment strategies based on SAS and Analysts recommendations - with
quarterly rebalancing.

This table compares the performance of the SAS-based (oracle and machine learning predictions) investment strategies to the one based on analyst recommendations.
The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural network (DNN). We compute
and test the difference in mean return, Sharpe ratio, and alpha (using the Fama-French 5 factor model + Momentum) between investment strategies based on the
previously cited methods and on analyst recommendation consensus. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real
value of stocks SAS values as computed from observed data. ORA;, ORA5, and ORAj are respectively for the SAS-Oracle strategies implemented by using the
real value of stocks SAS lagged by one, two, and three months respectively. The formed portfolio is held for one quarter, it is rebalanced in the beginning of the next
quarter, and the investment runs from January 2018 to December 2023.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN ORA ORA; ORA; ORAj RF GB OLS ENET DNN ORA ORA; ORA; ORAy RF GB OLS ENET DNN ORA ORA; ORA; ORAj Benchmark
Panel I: S&P500 benchmark portfolio

Mean (diff) -0.038  -0.028 -0.028 -0.014 0.007 0.343 -0.051 -0.062 -0.019 0.050 0071 0.041 0.049 0076 0311 -0.005 -0.042 -0.003 0.003 0.071 0.042 0.048 0.034 0240 -0.068 -0.103 -0.055 -0.236
t-stat -0.172  -0.112  -0.117  -0.059 0.028 1.357 -0.207 -0.248 -0.083 0297 0428 0.246 0291 0451 1.625 -0.026 -0.222 -0.016 0.028 0.585 0.334 0385 0277 1.543 -0.453 -0.691 -0.385 -1.432
p-value 0.864 0911 0907 0953 0978 0.179 0.837 0.805 0.934 0.768 0.670 0.806 0.772  0.653 0.109 0979  0.825  0.987 0978 0.560 0.740 0.701 0.782 0.128  0.652 0.492  0.702 0.157
Sharpe ratio (diff) 0.025 0035 0038 0041 0.041 0.116 0.039 0.040  0.042 0.039 0.044 0038 0.038 0.045 0.104 0.037  0.034  0.040 0.020 0.038 0.031 0.032 0.030 0.079 0016 0.016  0.022 -0.027
t-stat 0.747 0.964 1.030 1.088 1119 3.004 1.123 1.095 1.162 1.205  1.507  1.268 1.289 1.454  3.373 1.305 1.186 1.452 1.109  1.895 1.679 1.711 1.581 3.928 0.859 0.829 1.163 -0.944
p-value 0455 0335 0303 0276 0.263 0.003 0261 0273  0.245 0228 0132 0205 0.198 0.146 0.001 0192 0.236  0.146 0.268 0.058 0.093 0.087 0.114 0.0001 0.390 0.407  0.245 0.345
Alpha (diff) -0.041  0.024  -0.006  0.008 0.045 0.389 -0.008 -0.039  0.008 0.047  0.080 0.042 0.046 0.095 0.377 0.027 -0.003  0.048 0.032 0122 0.087 0.089 0.084 0.330  0.006 -0.024 0.018 -0.214
t-stat -0.279 0147 -0.037  0.049 0.283 2.093 -0.044 -0.210 0.044 0361 0.722 0347 0385 0.725 3.047 0.195 -0.024  0.383 0.347 1489 0964 0976 1.018 3.303  0.062 -0.262  0.195 -1.807
p-value 0.781 0.883 0.971 0.961 0.778  0.040  0.965 0.835 0.965 0.719 0473  0.730  0.701 0471 0.003  0.846 0.981 0.703 0.729  0.142  0.339  0.333  0.313 0.002 0.951 0.794 0.846 0.076

Panel I: S&P400 benchmark portfolio

Mean (diff) 0312 0.287 0562  0.524 0494 0.695 0.024 0.029  0.003 0.237 0275 0.347 0.342 0297 0423 -0.050 0.011 0.005 0.185 0.197 0.250 0.253 0.231  0.197 -0.094 -0.155 -0.088 -0.501
t-stat 1.260 1.125 2.051 1918  1.946 2256  0.079 0.092  0.010 1311 1389 1834 1776 1485 1.727 -0.206  0.047  0.024 1379 1311 1.906 1868 1.727 0.948  -0.564 -0.858  -0.492 -2.464
p-value 0.212  0.265 0.044  0.059  0.056 0.027  0.938 0.927  0.992 0.194 0.169 0.071  0.080 0.142 0.089 0.838 0962  0.981 0.172  0.194 0.061  0.066 0.089  0.347 0.574  0.394 0.624 0.016
Sharpe ratio (diff) 0.055  0.065 0.091  0.094 0.133  0.023 0.020  0.020 0.044  0.056 0.063 0.063 0.060 0.087 0.026  0.025  0.025 0.041  0.043 0.048 0.048 0.048  0.056 0.009  -0.001  0.012 -0.050
t-stat 1.385 1.666 1.965 2287 2871 0.514 0422  0.460 1470  1.911 2134 2.087 1.972 2565 0.897 0.764  0.775 1.975 2210 2367 2243 2488 2333 0474 -0.042  0.607 -1.024
p-value 0.166  0.096 0.049  0.022 0.004 0607  0.673  0.645 0.142  0.056 0.033  0.037 0.049 0.010 0370  0.445  0.438 0.048 0.027 0.018 0.025 0.013  0.020 0.636  0.967 0.544 0.306
Alpha (diff) 0.283  0.405 0.574  0.552  0.555 0.758  0.052 0.151 0.038 0.177  0.289 0318 0.318 0286 0.427 0.029  0.052  0.055 0.183 0245 0247 0.244 0239  0.267 0.004  -0.049  0.0002 -0.369
t-stat 0.959 1.709 2.280  2.164 2483 3473  0.258 0.558  0.169 0.844 1.716 2166 2285 1.762 2628 0.197 0308  0.323 1.388 2126 2280 2194 2293 2354 0.041  -0.411  0.002 -2.446

p-value 0.341 0.092 0.026  0.034 0.016 0.001 0.797  0.579  0.866 0.402  0.091 0.034 0.026 0.083 0.011 0.844 0.759  0.748 0.170  0.038 0.026  0.032  0.025  0.022 0.967  0.682 0.999 0.017
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Panel I. Cumulative Returns
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Figure B1: Historical Cumulative Returns and Cumulative Alphas of the SAS-Oracle Strategy - with quarterly rebalancing.

This figure presents the evolution of cumulative returns (I.) and cumulative alphas (II.) of SAS-Oracle portfolios for different benchmark indices (SP500 and
S&P400). We form the SAS-Oracle portfolios every quarter by sorting stocks into decile portfolios based on their previous month measure of absolute deviation
from benchmark (SAS). Selected stocks are weighted based on their SAS values in the portfolio. The evaluation period goes from October 2007 to December 2023.
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Figure B2: Stocks in the SAS portfolio by Benchmark index.

This figure presents a word cloud of the long-only SAS-Oracle strategy that consists of taking a long position in the 5% stocks with the highest SAS values for the
S&P500 and S&P400 indices over the investment period. Oracle investors behave as if mutual fund holding information were known in real time. The evaluation
period goes from October 2007 to December 2023.
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Figure B3: Historical Cumulative Returns and Cumulative Alphas of the SAS-Oracle Strategy - with monthly rebalancing.

This figure presents the evolution of cumulative returns (I.) and cumulative alphas (II.) of SAS-Oracle portfolios for different benchmark indices (S&P400 and
S&P500). We form the SAS-Oracle portfolios every month by sorting stocks into decile portfolios based on their previous month measure of absolute deviation
from benchmark (SAS). Selected stocks are weighted based on their SAS values in the portfolio. The evaluation period goes from October 2007 to December 2023.
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Figure B4: Correlation Matrices between predicted SAS measures and Analyst Recommendation Consensus - monthly rebalanc-
ing.

This figure presents the correlations between the machine learning-predicted SAS measures, SAS-Oracle measures, and analyst recommendation consensus for two
different benchmark indices (S&P500, and S&P400). The latter aggregates analyst recommendations for Strong Buy (value between 1&1.49), Buy (value between
1.5&2.49), Hold (value between 2.583.49), Underperform (value between 3.584.49), and Sell (value between 4.5&5). The SAS-Oracle measures (ORACLE) are
the real value of stocks SAS values as computed from observed data. The prediction of the SAS measure uses different machine learning algorithms: random forest
(RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), and deep neural network (DNN). Every month, we expand the training sample, and
the prediction period spans from January 2018 to December 2023. We have tested all the correlations and found that they are statistically different from zero.
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Figure B5: Out-of-sample (Top portfolios) SAS Strategy Cumulative Returns and Cumulative Alphas - with monthly rebalancing.
This figure presents the evolution of cumulative returns (I.) and cumulative alphas (II.) of machine learning-based SAS portfolios for different benchmark indices
(SP400 and S&P500). We form the machine learning-based SAS portfolios using five different prediction models: OLS, elastic net, random forest, gradient boosting,
and deep neural networks. The portfolios are formed every month by selecting the top 10 percent of stocks with the highest predicted SAS values. Selected stocks
are weighted based on their predicted SAS values in the portfolio. The out-of-sample prediction period goes from January 2018 to December 2023.
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