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Abstract

We define Stock Active Share (SAS) as the degree to which a stock in a benchmark

index is actively weighted by mutual funds relative to its index weight. We analyze the risk-

return characteristics of portfolios ranked by SAS values. The top quantile portfolio delivers

significant monthly risk-adjusted returns, highlighting mutual fund managers’ capital allocation

proficiency. However, due to the delayed disclosure of fund holdings, SAS is unobservable

in real-time, making the strategy unfeasible for typical investors. To address this, we apply

machine learning models to historical fund holdings and stock characteristics to predict future

SAS and sort portfolios accordingly. These models demonstrate substantial out-of-sample

accuracy, and the feasible top quantile portfolio consistently outperforms the benchmark across

risk-adjusted measures. Our findings illustrate the enduring value of fund managers’ stock-

picking skills, challenging the view that technological advancements diminish their importance.

Furthermore, the feasible strategy outperforms traditional analyst recommendations and aligns

with sustainability goals by favoring stocks with lower carbon intensity.
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1 Introduction

The digital transformation of modern economies has dramatically improved access to information

and financial markets. Ordinary investors now have easy access to trading platforms, often through

smartphones, allowing them to manage their portfolios (Eaton et al.; 2022; Bryzgalova et al.; 2023).

This increased accessibility, however, raises questions about the role of professional investors who

manage assets on behalf of others. Specifically, it remains unclear whether mutual funds have a

reliable source of information that allows them to allocate capital effectively to firms capable of

generating positive risk-adjusted returns. Additionally, a practical question arises: can investors

learn and profit from the skills of mutual fund managers by analyzing the history of mutual fund

holdings? This paper provides evidence supporting a positive answer to this question.

We consider Stock Active Share (SAS) to measure the degree to which a stock belonging to

a standard benchmark index is actively weighted by mutual funds compared to its weight in the

benchmark index, and we analyze the risk-return characteristics of portfolios formed by ranking

stocks according to their active shares among mutual funds. SAS for a given stock in a benchmark

index, calculated as the sum of the absolute differences between the weights of the stock in various

mutual funds and its weight in the benchmark index, is interpreted as a measure of managers’

conviction about the stock’s value. We focus on two benchmark indexes: the MidCap S&P400 and

the BigCap S&P500. We show that knowing ex-ante the information that mutual funds reveal ex-

post about their portfolio composition, like an Oracle, allows us to design a SAS-based investment

strategy that consistently outperforms the market index. This strategy, termed our “SAS-Oracle

strategy,” which uses quarterly rebalancing to sort stocks into portfolios based on SAS values and

buys the top quantile portfolio, generates monthly risk-adjusted returns ranging across benchmark

indexes from 0.67% to 0.92% in tercile portfolios, from 0.73% to 1.15% in quintile portfolios, and

from 0.74% to 1.41% in decile portfolios.

Although the findings suggest that mutual fund managers can efficiently allocate capital and

surpass passive investors, their skills do not directly benefit mutual funds mimicking investors

due to the delayed release of information on mutual fund holdings. When this information is
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available, it’s too late for mutual funds mimicking investors to use it to implement the SAS-Oracle

strategy effectively. We employ machine learning models to anticipate SAS value to address this

limitation. We train four machine learning models—elastic net, random forest, gradient boosting,

and deep neural network—and utilize ordinary least squares (OLS) regression on historical data

encompassing thousands of month-stock observations and hundreds of stock characteristics, aiming

to predict mutual fund managers’ later-released conviction about stock value. This predictive

approach allows us to construct our investment portfolios proactively.

We initially investigate the capacity of machine learning models to predict the SAS value of

stocks, our primary measure of interest. Our analysis reveals a notably high out-of-sample Pearson

correlation between the actual SAS values and their predictions by the machine learning models.

For instance, we see a 66% correlation for deep neural network (DNN) and 70% for random forest

(RF) in BigCap stocks, and 46% for DNN and 44% for RF in MidCap stocks, with the models being

updated every three months. Similar levels of accuracy are seen in other goodness-of-fit measures,

such as out-of-sample R-squared values. These metrics are crucial, as higher out-of-sample fits

indicate that sorting stocks based on their SAS predictions by the machine learning models can

effectively proxy portfolio sorts based on actual but unobservable SAS values.

Next, we demonstrate the efficacy of a machine learning-based investment strategy that uses

quarterly rebalancing to sort stocks into portfolios based on predicted SAS values, explicitly

targeting the top quantile portfolio. This strategy termed our “SAS-feasible strategy,” consistently

outperforms the benchmark index across various measures of risk-adjusted returns. For BigCap

stocks, the monthly risk-adjusted returns achieved by the DNN and RF models in the SAS-feasible

top quintile portfolio are 0.35% and 0.30%, respectively. These figures represent 86.93% and

74.37% of the risk-adjusted return in the SAS-Oracle top quintile portfolio during the same period.

In the MidCap category, the DNN and RF models deliver monthly risk-adjusted returns of 0.62% and

0.51%, respectively, corresponding to 84.27% and 69.90% of the SAS-Oracle top quintile portfolio

counterparts. For comparison, the two benchmark indexes record a zero monthly risk-adjusted

return during the same period.
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Our strategy allows us to create relatively concentrated yet diversified portfolios anytime. We

observe that the total risk of the SAS-feasible strategy is comparable to, if not lower than, that of the

benchmark index while offering higher returns. Additionally, our portfolio strategy exhibits less

negative skewness and lower kurtosis than the benchmark indexes, indicating a lower probability

of adverse outcomes for active investors than those passively holding the benchmark index. Our

findings are robust across different quantile-based portfolio formations (tercile, quintile, or decile),

allowing us to assess the impact on diversification by varying the number of stocks in our portfolio.

Surprisingly, the portfolio performance remains very stable, making it suitable for modest individual

investors and more prominent institutional investors seeking to hold more stocks.

This novel finding suggests that investors can enhance their portfolios by learning from mutual

fund managers’ historical holdings, which reflect skilled decision-making. A fund’s portfolio results

from an optimization process where a manager uses various stock characteristics and market signals

to allocate capital effectively. Skilled managers consistently select valuable stocks, deviating from

the market index to achieve higher returns. If mutual fund performance were purely driven by luck,

a deterministic strategy based on fund holdings wouldn’t consistently outperform the market. This

paper demonstrates that fund managers’ collective skills provide valuable information, enabling

profitable asset allocation strategies that generate positive risk-adjusted returns for investors.

This article connects to several strands of literature. The debate on mutual funds’ ability to select

well-performing stocks and time the market remains unsettled. Early research found little evidence

of manager skill, leading to skepticism about the value of active management and a preference for

passive investing (Carhart; 1997; Fama and French; 2010). The conventional view suggests that

most funds underperform after fees, with limited persistence in performance and few managers

showing skill beyond costs (Cremers and Petajisto; 2009). However, recent studies using different

measures, such as active shares (Daniel et al.; 1997; Cremers and Petajisto; 2009) and funds’

inflows (Berk and van Binsbergen; 2015), challenge this view, finding that some mutual funds can

outperform the market even after fees, and that top-performing funds often exhibit persistence.

Our paper builds on Kacperczyk et al. (2005) and Cremers and Petajisto (2009) who pre-
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dict mutual fund performance through their aggregate deviation from the fund-specific benchmark

weights. Jones and Mo (2020) investigate the out-of-sample performance of mutual fund predictors

and discover that related publications rendered mutual fund active share and industry concentration

ineffective in predicting mutual fund performance. They explain this through a learning channel,

meaning investors or mutual fund managers learn from academic literature and change their in-

vestments. We differ from them in two ways: first, we use stock deviations relative to standard

benchmark indices rather than fund-specific benchmarks; second, we aggregate deviations across

funds for each stock rather than across stocks in a fund. This approach departs from the original ac-

tive share definition, and we argue it provides novel market information. Empirical results support

this, as portfolios based on our SAS measure consistently outperform benchmark indices.

Our approach follows Jiang et al. (2014), who measure mutual funds’ deviations from bench-

marks by averaging the simple (not absolute) differences between a stock’s weight in mutual funds

and its weight in the benchmark index. Unlike their focus on stocks held by mutual funds or in

the fund’s specific benchmark, we concentrate on stocks within a standard benchmark. Like them,

we calculate the Net Stock Active Share (NSAS) as the sum of the simple differences between a

stock’s weight in mutual funds and its benchmark. Our findings reveal that positive differences

are significantly larger than negative ones, and strong positive correlations between simple and

absolute differences: 0.89 for the S&P500 and 0.90 for the S&P400. Thus, both NSAS and SAS

should yield similar results for stock selection.

Jiang et al. (2014) show that decile portfolios based on average deviations generate alpha, sug-

gesting mutual fund managers possess stock-picking skills. We confirm this by demonstrating that

our SAS-Oracle strategy, which selects top quantile stocks by SAS values, outperforms the market

index. Unlike previous studies, we address the impracticality of delayed mutual fund holdings’

disclosure by using machine-learning methods, historical fund holdings, stock characteristics, and

macroeconomic data to build tradable portfolios that consistently outperform market indices.

Additionally1, Antón et al. (2008, 2021) developed a “best ideas” portfolio for mutual fund
1Wermers et al. (2012), Agarwal et al. (2013), and Yan and Zhang (2007) find positive return predictability from the

portfolio holdings of actively managed mutual funds, hedge funds, and short-term institutional investors, respectively.
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managers, but our approach differs. Their method focuses on maximizing the Sharpe ratio for

individual managers’ top ideas, while our strategy seeks to identify the best ideas across managers,

resulting in a more concentrated portfolio. Despite this, our approach remains flexible, allowing for

adjustments in the number of stocks included. Our portfolio demonstrates high active share with

low tracking error, consistent with diversified stock selection as per Cremers and Petajisto (2009).

The rise of artificial intelligence in finance has spurred numerous studies on machine learning

applications in investment (Kelly and Xiu; 2023). For example, Gu et al. (2020) employ machine

learning algorithms with multiple predictors to construct stock portfolios that outperform the

market. Similarly, we utilize machine learning and stock characteristics to develop a profitable

investment strategy. However, we further enhance this approach by incorporating insights from fund

manager expertise to achieve this objective. Li and Rossi (2021) apply machine learning models

and mutual fund holdings’ characteristics to predict high-performing mutual funds. Kaniel et al.

(2023) integrate deep learning with mutual fund characteristics, holdings, and investor sentiment

to forecast mutual fund performance, concluding that stock characteristics are not essential for

selecting top-performing funds. DeMiguel et al. (2023) supported this view, showing that machine

learning and mutual fund characteristics can be used to construct profitable mutual fund portfolios.

In contrast, our objective is not to identify the best-performing mutual funds but to predict

the best-performing stocks within benchmark indices using the aggregate information from mutual

funds. Our contribution lies in leveraging machine learning and stock characteristics to predict

mutual fund managers’ collective stock valuations based on their deviations from a standard bench-

mark. Unlike traditional approaches focusing on stock returns, we use mutual funds’ aggregate

deviations as the target variable in our models. This allows us to capture return maximization and

broader objectives like managing drawdown or value-at-risk, offering more profound insights into

mutual funds’ investment strategies.

We extend our performance comparison beyond standard stock indices, including comparing

SAS strategies with those based on analyst recommendations. Barber et al. (2001) show that buying

stocks with favorable consensus recommendations is profitable. Our results indicate a weak but
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positive correlation between analyst recommendations and SAS measures. While both strategies

outperform benchmark indices, the SAS-based strategies consistently deliver better risk-adjusted

returns, suggesting that machine learning predictions based on mutual fund manager behavior

provide more effective investment guidance than analyst recommendations.2

Finally, we explore the relationship between fund manager stock preferences as reflected in

SAS measures and carbon emissions level and intensity. On the one hand, our findings indicate

a significant negative correlation between a stock’s carbon emissions intensity and its SAS value,

meaning that stocks favored by fund managers for outperforming benchmark indices tend to have

lower carbon emissions intensity or, equivalently, to be more carbon efficient. This aligns the

SAS strategy with ESG criteria, demonstrating that achieving both strong financial returns and

sustainable investment goals is possible. On the other hand, we find a positive relationship between

carbon emissions level and SAS value, which shows that a stock’s higher level of carbon emissions

predicts a higher expected return for investors, suggesting that higher SAS stocks may earn a carbon

premium for their exposure to climate-related risks (Bolton and Kacperczyk; 2021, 2023).

The remainder of the paper is organized as follows: Section 2 introduces the stock active

share, our measure of managers’ conviction regarding stock value, and provides details on our

data. Section 3 explores the composition and performance of the SAS-Oracle portfolios. Section

4 focuses on the machine learning implementation and performance for predicting SAS measures.

Section 5 presents and evaluates the main results, focusing on the financial performance of the

machine learning-based investment strategy. Section 6 explores the relationship between the SAS-

feasible strategy and carbon emissions. Section 7 concludes the paper. An External Appendix

offers additional results on portfolio rebalancing at a monthly frequency.
2We show in the internet appendix that sorting stocks on lagged one-month, two-month, or three-month SAS values,

which are readily available, renders the investment strategy ineffective. More specifically, the performance achieved is
not better than analyst recommendations and worse than investment strategies based on machine learning.
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2 Data, Measures, and Descriptive Statistics

This section explores publicly available data on U.S. mutual fund holdings. It introduces and

formally defines the stock active share, a crucial measure upon which all subsequent empirical

analyses are based. Additionally, relevant summary statistics for stock active share are provided

and discussed, serving as a foundation for the empirical investigation that follows.

2.1 Data on Mutual Fund Holdings of Stocks

We collect data from multiple sources, primarily the CRSP Survivor-Bias-Free U.S. Mutual Fund

Database, covering the period from August 2007 to December 2023.3 We begin by selecting actively

managed U.S. equity mutual funds using the Fund Summary table, following the methodology of

Kacperczyk et al. (2006). Funds are chosen based on their Investment Objective Codes.4 Index

funds are identified and excluded by their names,5 and only funds with at least two-thirds of their

total net assets (TNA) in common stocks are retained.

We obtain the CRSP holdings file, which provides a list of equities held by open-ended funds,

along with their percentage of total net assets. The historical list of benchmark index constituents

is sourced from Refinitiv/Datastream, along with the market capitalization of each constituent,

enabling us to calculate the portfolio weights of the benchmark index. The weight of each stock

in the benchmark index is determined by dividing its market value by the total market value of the

index. These weights are then used to calculate the deviation of each stock, in the benchmark index,

from the corresponding holdings reported by each mutual fund. These deviations are subsequently
3The SEC’s Rule IC-26372, implemented in May 2004, requires mutual funds to disclose their end-of-quarter

holdings four times a year within 60 days. Prior to this, disclosure was optional and limited to a few funds. Before
August 2007, our dataset includes a small number of funds (fewer than 10) that disclosed holdings regularly.

4We select funds with the following Lipper classification codes: EIEI, G, LCCE, LCGE, LCVE, MCCE, MCGE,
MCVE, MLCE, MLGE, MLVE, SCCE, SCGE, or SCVE. If a fund lacks a Lipper code, we use Strategic Insight
objectives (AGG, GMC, GRI, GRO, ING, or SCG). If neither the Strategic Insight nor Lipper objective is available,
we rely on the Wiesenberger Fund Type Code, selecting funds with objectives G, G-I, AGG, GCI, GRI, GRO, LTG,
MCG, or SCG. If none of these objectives is available, we retain a fund if it follows a CS policy (i.e., primarily holds
common stocks).

5We exclude funds with any of the following text strings in their name: ”INDEX”, ”Index”, ”IDX”, ”Idx”, ”S&P”,
”s&p”, ”Fixed”, ”FIXED”, ”TAX”, ”tax”, ”Tax”, ”CONVERTIBLE”, ”Convertible”, ”annuity”, ”ANNUITY”, ”ANN”,
”ann”, ”VAR”, ”Var”, ”CONV”, ”Conv”.
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aggregated across mutual funds to compute the stock active shares. Benchmark index returns are

also sourced from Refinitiv/Datastream.

Additionally, we acquire data on the Fama-French five factors (market, size, value, investment,

and profitability), as well as the momentum factor, from Prof. Kenneth French’s website, along

with the risk-free interest rate.

Figure 1 provides a comprehensive view of the composition of our dataset over time. Panel I

illustrates the evolution of the number of stocks held by mutual funds across the S&P500 (Large-

Cap) and S&P400 (Mid-Cap) indices. In the S&P500 (Panel I.A), mutual funds consistently

increased their holdings of large-cap stocks, starting with above 350 stocks in the early 2000s,

despite some notable fluctuations. By the early 2020s, mutual funds held over 450 stocks from the

S&P500, indicating stable and substantial exposure to large-cap equities. In the S&P400 (Panel

I.B), holdings followed a similar upward trajectory, though fluctuations in the early 2000s were

larger, and recent years saw a slight decline, suggesting a reduced emphasis on mid-cap stocks in

mutual fund portfolios. These trends indicate that mutual funds have progressively expanded their

exposure across all two indices, with the most consistent growth observed in the S&P500, while

mid-cap stocks exhibited greater variability in mutual fund holdings.

Panel II illustrates the percentage of index capitalization for stocks held by mutual funds in the

S&P500 and S&P400 indices. In Panel II.A, S&P500 stocks held by mutual funds consistently

represent approximately 80% of the index capitalization, with notable stability after 2010. In

Panel II.B, the percentage of index capitalization for S&P400 stocks held by mutual funds exhibits

more volatility in the beginning of the sample period, but stabilized around 75% in 2010, before

increasing steadily to approach 95% by the end of the sample period. These patterns suggest that

mutual funds exhibit strong and stable coverage and exposure to large-cap stocks, while showing

increasing interest and investment in midcap stocks, particularly after 2010.

Panel III of Figure 1 illustrates the number of mutual funds displaying their holdings for

stocks within the S&P500 and S&P400 indices over time.6 In Panel III.A, the number of funds
6We smoothed the data by calculating the three-month rolling average. Otherwise, the data would display high

fluctuations and seasonality, with the number of mutual funds sharply increasing at the end of quarters.
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disclosing their holdings of S&P500 stocks increases sharply from 2001 to 2005, likely due to the

implementation of the SEC’s Rule IC-26372 on mutual fund holding disclosure, peaking at over

1,250 funds, and remains relatively stable thereafter. A similar trend is observed in Panel III.B

for the S&P400 index, where the number of funds disclosing their holdings also stabilizes above

1,200 funds after a period of rapid growth. A sharp decline towards the end of the sample period

(2023) is visible across the S&P500 and S&P400 indices, possibly indicating consolidation within

the mutual fund industry or changes in disclosure practices.

2.2 Stock Active Share: Motivation, Definition, and Summary Statistics

2.2.1 Motivating and Defining Stock Active Share

Active mutual funds outperform their benchmark index by selecting winning stocks or timing the

market through increased exposure to specific market factors, such as overweighting particular

sectors (Cremers and Petajisto; 2009; Petajisto; 2013). These funds tend to have a higher active

share, indicating substantial deviations from the benchmark regarding stock weightings. In contrast,

closet index funds display a lower active share, closely tracking their benchmark. Since a sufficiently

high active share correlates with mutual fund outperformance, the stocks contributing significantly

to active share may also drive this outperformance. Therefore, a concentrated portfolio of such

stocks will likely outperform the benchmark index.

However, the original active share measure has faced several critiques. Jones and Mo (2020)

find that, after the academic publications emphasizing active share’s effectiveness as a performance

predictor, the measure has become noisier and no longer reliably predicts performance. Our

measure captures a different view than the original active share definition, making it distinct and

potentially less susceptible to the previously identified market learning effects.7

We construct a SAS portfolio comprising stocks that contribute the most to the aggregate active

share of mutual funds within a standard benchmark index. Each month, for every stock in the
7If this is not the case, the data will reveal it, especially as our sample, beginning in 2007, broadly covers the period

following the 2009 publication.

9



benchmark, we calculate its active share by summing the absolute differences between its weight

in each mutual fund portfolio and its weight in the benchmark. Importantly, we measure mutual

fund deviations not from specific benchmarks but from a common, standardized benchmark index.

The SAS portfolio is then formed based on these stock-level active share measures.

Formally, let wi,t be the weight of stock i in the benchmark index at time t, and wi,j,t be the

weight of stock i in mutual fund j’s portfolio at time t. Let Ni,t represent the number of mutual

funds that have disclosed their holdings at time t in stock i. We define the following stock-level

measures of active management among mutual funds:

• The Stock Active Share (SAS) aggregates the Absolute Deviation From Benchmark (ADFB):

SASi,t ≡
Ni,t∑
j=1

ADFBi,j,t where ADFBi,j,t =
∣∣wi,j,t − wi,t

∣∣ , (1)

• The Net Stock Active Share (NSAS) aggregates the Deviation From Benchmark (DFB):

NSASi,t ≡
Ni,t∑
j=1

DFBi,j,t where DFBi,j,t =
(
wi,j,t − wi,t

)
. (2)

We use a summation of ADFB or DFB instead of an average because we aim for our measure to

capture the broad market consensus.8 Using an average (e.g., Jiang et al.; 2014) would, for instance,

treat a stock held by a single mutual fund with a specific deviation from the benchmark the same

as a stock held similarly by all mutual funds. The latter, however, represents a market consensus,

while the former does not. Using the sum, we can clearly differentiate between these two cases,

with the stock aligned with the market consensus exhibiting a higher SAS or NSAS value.

2.2.2 Descriptive Statistics on Deviation from Benchmark

Table 1 provides a detailed analysis of mutual fund portfolio weights compared to benchmark

indices over the period from August 2007 to December 2023. The table is organized into two
8One could consider weighting the deviations by the fund’s assets. However, this would give more importance to

funds with greater total net assets (TNA), leading to an allocation strategy that aligns more closely with their views.

10



panels, corresponding to the S&P500 (Panel I) and S&P400 (Panel II). For each benchmark index,

sub-panels present summary statistics as follows: sub-panel A displays the weight of a stock

disclosed by the mutual fund in its portfolio, while sub-panel B shows the weight of the stock if it

were to match its weight in the benchmark index, referred to as the benchmark-matching weight.

Sub-panel C reports the stock deviation from the benchmark (DFB), calculated as the difference

between the two preceding measures, and sub-panel D provides the absolute deviation from the

benchmark (ADFB), which represents the absolute value of the DFB.

The table provides summary statistics for a stock in mutual fund portfolios, aggregated across all

funds, all stocks, and all time periods. Each statistic characterizes the typical allocation percentage

that mutual funds have invested in a stock, averaged over time and across different funds. This

analysis helps to understand the degree of deviation from the benchmark index and the extent of

active management by mutual funds.

Across all two indices, mutual funds exhibit a clear tendency to overweight specific stocks

compared to the benchmark, particularly in the case of BigCap stocks. On average, mutual funds

allocate 0.85% to a typical large-cap stock (with a standard deviation of 1.03%), significantly

higher than the benchmark-matching allocation of 0.31% (with a standard deviation of 0.51%). For

BigCap stocks, the average ADFB is 0.63% compared to 0.53% for the DFB, with approximately

73.66% of DFBs being positive. In contrast, fewer than half of the deviations for MidCap stocks are

positive, indicating that mutual funds tend to underweight these stocks relative to the benchmark.

However, the magnitude of positive deviations consistently exceeds that of negative deviations

across all indices, reflecting a preference for concentrated positions in certain stocks. The strong

correlations (around 0.90) between DFB and ADFB for all indices indicate that absolute deviations

are closely aligned with directional deviations, highlighting the substantial active management

strategies employed by mutual funds.
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2.2.3 Descriptive Statistics on Stock Active Share

Table 2 presents the summary statistics for the same measures introduced in the sub-panels of

Table 1, but aggregated across mutual funds. Thus, the reported summary statistics are based on

stock-month observations. Similar to Table 1, it is organized into two panels corresponding to the

S&P500 (Panel I) and S&P400 (Panel II). For each benchmark index, sub-panel A displays the

cumulative weight of a stock disclosed by mutual funds in their portfolios, while sub-panel B shows

the cumulative weight of the stock if it were to match its weight in the benchmark index, referred to

as the cumulative benchmark-matching weight. Sub-panel C reports the cumulative stock deviation

from the benchmark, or Net Stock Active Share (NSAS), calculated as the difference between the

two preceding measures, and sub-panel D provides the cumulative absolute deviation from the

benchmark, or Stock Active Share (SAS).

Panel I shows that mutual funds allocate 110.34% of their capital to stocks on average, with a

standard deviation of 174.33%, compared to a benchmark-matching mean of 40.84% and a standard

deviation of 137.27%. This indicates a general tendency for mutual funds to overweight certain

stocks relative to the benchmark. Only 0.89% of stock-month observations have negative NSAS

values, mainly from large firms like Microsoft, ExxonMobil, and Walmart. The high correlation

(0.78) between NSAS and SAS suggests that both measures yield similar results in stock selection,

with an even higher correlation (0.94) in the NSAS > 0 subsample.

In Panel II, mutual funds allocate an average of 34.60% to MidCap stocks, with a standard

deviation of 31.88%, while the benchmark-matching mean is 20.60%. About 15.89% of NSAS

values are negative, indicating more frequent underweighting in MidCap stocks compared to BigCap

stocks. The correlation between NSAS and SAS is 0.69, showing a moderately strong relationship.

Overall, mutual funds allocate more capital to BigCap stocks, followed by MidCap, with a

higher tendency to underweight MidCap stocks. The high correlations between NSAS and SAS

across all indices suggest these measures can be used interchangeably in most stock selection

strategies.
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3 Preliminary Results on SAS Portfolio Performance and Composition

In this section, we empirically evaluate the performance of an investment strategy that selects, at

each period, the stocks with the highest SAS values, repeating this process at the start of each

period. The core idea is that one can only outperform the benchmark index with a portfolio that

deviates sufficiently from it. Therefore, investing in a limited number of stocks with sufficiently

high SAS values, based on mutual fund holdings disclosures, could help achieve this goal. We

implement this strategy by sorting the SAS values of the benchmark index constituents, reported as

held by at least one mutual fund, into quantiles at each period. We then examine the performance of

portfolios composed of assets in each quantile. Intuitively, the lower quantile portfolio, composed

of assets with minimal deviations from the benchmark index, should perform similarly to the index.

In contrast, the upper quantile portfolios, composed of assets with more significant deviations, are

expected to outperform the index. We will test this hypothesis in the following sections.

Let Qn,t(SAS) denote the nth quantile portfolio at time t, formed by sorting stocks based on

their SAS values (assuming these values are known at time t). The return of this portfolio from t

to t+ 1 is computed as follows:

rQn,t(SAS),t+1 =
∑

i∈Qn,t(SAS)

λi,tri,t+1 (3)

where ri,t+1 is the return of stock i from t to t + 1, and λi,t is the weight of stock i at time t. The

weights are normalized such that
∑

i∈Qn,t(SAS) λi,t = 1. Stocks in the quantile portfolios can be

equally weighted, value-weighted, or weighted according to their SAS values.9

Table 3 presents performance metrics for the benchmark indices and SAS-weighted decile,

quintile, and tercile portfolios from October 2007 to December 2023, where assets are sorted

by SAS values and rebalanced quarterly.10 These portfolios are called SAS-Oracle,11 assuming
9Subsequent unreported results show that the weighting scheme has minimal impact on the performance of the

SAS-sorted portfolio strategies.
10We also tested value-weighted and equal-weighted portfolios with similar results, which are omitted for brevity.

Monthly rebalancing results are available in the external appendix, showing similar patterns.
11The term “Oracle” suggests that investors can perfectly anticipate SAS values, reflecting non-public information
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contemporaneous or perfectly anticipated SAS values. The table is divided into two panels: Panel

I for the S&P500 and Panel II for the S&P400.

Across all indices, the top quantile portfolios—decile, quintile, or tercile—consistently outper-

form the lower quantiles and the benchmark index in terms of mean return, standard deviation,

Sharpe ratio, and alpha. In Panel I, the top decile portfolio (Q10) delivers a mean return of 1.56%,

compared to 0.86% for the benchmark and 0.82% for the bottom decile (Q1). This trend is mirrored

in the S&P400, where Q10 outperforms the lower quantiles and the benchmarks. The top portfo-

lios also exhibit lower volatility than the benchmark, with Q10 in the S&P500 having a standard

deviation of 4.24%, compared to 4.66% for the benchmark and 7.10% for Q1.

Sharpe ratios rise from the bottom to the top quantiles, with Q10 in the S&P500 achieving 0.35,

significantly higher than the benchmark’s 0.17 and Q1’s 0.10. Similar upward trends are observed

across quintile and tercile portfolios, further confirming the superior risk-adjusted performance of

the top quantile portfolios. Kurtosis improves across the quantiles, and though skewness becomes

more negative in top portfolios, the adjusted Sharpe ratio remains higher for top quantiles due to

better overall performance.

Alpha values, which measure risk-adjusted returns against the Fama-French five factors and the

momentum factor, further reinforce the outperformance of top quantile portfolios. In the S&P500,

Q10 generates an alpha of 0.74%, compared to −0.02% for the benchmark and −0.13% for Q1.

Similar patterns are observed in the S&P400, where Q10 generates an alpha of 1.41%, compared

to −0.07% for the benchmark and 0.27% for Q1.

Although quintile and tercile portfolios show similar performance patterns, their Sharpe ratios

and alphas are generally lower than those of the top decile portfolios, suggesting that focusing on a

smaller set of high-SAS stocks enhances portfolio efficiency.

Overall, the SAS strategy consistently identifies high-performing stocks, with top portfolios

outperforming both the benchmark indices and lower quantiles regarding returns and risk-adjusted

performance. Concentrating on the top decile portfolios allows for significant outperformance

held by mutual fund managers.
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without increasing risk, underscoring the value of active mutual fund managers’ stock selection.

A long-term evaluation of the SAS-Oracle portfolios from October 2007 to December 2023

shows significant outperformance over passive strategies. The top decile SAS-Oracle portfolio

achieved cumulative returns of approximately 300% for BigCap stocks (and over 400% for MidCap

stocks), translating to a fourfold increase in initial investment. For example, a $1,000 investment

in the BigCap SAS-Oracle portfolio would have grown to $3,850 by December 2023, compared to

a 147% return for the S&P500. The strategy also delivers superior risk-adjusted returns (alphas),

with cumulative alphas of around 130% for BigCap stocks and 250% for MidCap. In contrast,

benchmark indices’ alphas remain close to zero, indicating passive returns are largely driven by

systematic risk exposure.12

The SAS-Oracle strategy finally shows strong persistence and consistency in selecting high-

performing stocks, particularly for the BigCap. In this category, Microsoft is selected 98.5% of

the time in the SAS-Oracle top ventile portfolio, followed by JP Morgan Chase (89.7%), Alphabet

(78.5%), Visa (61.5%), and Meta (57.4%). For MidCap stocks, Reinsurance Group of America

leads with a 44.6% selection rate, followed by ANSYS (30.3%), IDEX (16.9%), Carlisle (15.9%),

and BJS Wholesale Club (14.4%).13

This section provides empirical evidence that mutual fund holdings contain collective infor-

mation capable of consistently outperforming the market when effectively utilized. This suggests

that the success of the SAS strategy is driven by managerial skill, not random chance. If fund

managers lacked skill, the SAS strategy’s performance would be random and fail to surpass the

benchmark. Instead, the strategy aggregates their expertise into superior knowledge, similar to

how artificial intelligence combines information efficiently. The persistence of certain stocks in the

SAS-Oracle portfolio further indicates that the strategy is not random but potentially predictable.

Although delays in fund holdings disclosures limit real-time application, this persistence offers

valuable insights for stock selection predictability, which will be explored in the next section.
12Details on cumulative returns and alphas of the SAS-Oracle strategy and benchmark indices are provided in Figure

B1 in the external appendix.
13For an illustration of stock selection history, refer to Figure B2 in the external appendix.
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4 Predicting Managers’ Convictions About Stock Values

Following DeMiguel et al. (2023), we apply various machine learning methods to predict stocks’

SAS measures and select stocks for our investment portfolio. This involves using the history of

mutual fund holdings and stock characteristics to learn decision rules that mimic the skills of mutual

fund managers. The objective is to build a model that predicts future SAS values based on current

stock characteristics, akin to how managers select stocks using publicly available information.

We frame this supervised learning task as either a regression problem for predicting the stock’s

SAS measure or a classification problem for predicting stock selection into the SAS strategy. Simple

models, such as Ordinary Least Squares, serve as baselines, while more advanced models include

Elastic Net, Random Forests, Gradient Boosting, and Deep Neural Networks.14

Ordinary Least Squares (OLS) assume a linear relationship between predictors and outcomes

but may lead to overfitting, especially with many predictors. Elastic Net (ENET) addresses this

by adding regularization to prioritize important predictors while penalizing less significant ones.

Random Forests and Gradient Boosting capture non-linear relationships and interactions between

predictors. While Random Forests (RF) reduce variance by averaging predictions across multiple

decision trees, Gradient Boosting (GB) iteratively improves predictions by focusing on observations

poorly predicted by previous trees. Lastly, we employ Deep Neural Networks (DNN) to approximate

complex functions through layers of interconnected neurons.

4.1 Data and Procedure

We utilize 90 stock-level variables, as detailed in Table 4, following Gu et al. (2020), alongside

9 macroeconomic predictors described in Welch and Goyal (2008). These include key variables

such as the dividend-price ratio, earnings-price ratio, book-to-market ratio, net equity expansion,
14These models are trained and validated using cross-validation to ensure they generalize well to unseen data, and

we use a modified version of the code provided by DeMiguel et al. (2023) to verify our calculations, except for Deep
Neural Networks, which are not considered by these authors. Further details about the mathematical formulations
of these models, including regularization techniques, decision tree splitting, and neural network architecture, can be
found in the external appendix.

16



Treasury-bill rate, term spread, default spread, and stock variance.15

Data pre-processing involves replacing missing values with cross-sectional averages for each

period. Additionally, all explanatory variables are standardized by subtracting their cross-sectional

mean and dividing by the cross-sectional standard deviation on a monthly basis.

The dataset comprises stock-month observations, split into training, validation, and test samples.

A recursive training procedure is applied with an expanding estimation window. The model is

updated quarterly, incorporating newly available data. Our initial training period spans from

August 2007 to December 2017, with the final 12 months of this period reserved for validation.16

The model parameters are updated at quarterly as the portfolio’s rebalancing frequency.

We optimize model hyperparameters—such as regularization parameters in Elastic Net, the

number of trees in decision trees, and architecture specifics for deep neural networks (e.g., layers,

neurons, activation functions, regularization rates, and learning rates)—using the validation set.

The aim is to minimize overfitting and improve the model’s ability to generalize to unseen data.

We base our hyperparameter selection on minimizing the loss function and ensuring convergence

in performance between the training and validation datasets. Successful convergence indicates the

model’s ability to predict future values in the test set.

We evaluate the predictive performance of the models both statistically and financially. Statisti-

cally, we use two metrics: the traditional out-of-sample R2 (R2
OOST

) and a modified out-of-sample

R2 (R2
OOSM

), designed to account for potential biases in individual stock SAS predictions. These

metrics are defined as:

R2
OOST

= 1−
∑

(i,t)∈T (SASi,t − ŜASi,t)
2∑

(i,t)∈T (SASi,t − SAST )2
, (4)

R2
OOSM

= 1−

∑
(i,t)∈T

(
(SASi,t − SAST )− (ŜASi,t − ŜAST )

)2

∑
(i,t)∈T (SASi,t − SAST )2

(5)

15We obtain monthly updates for these variables from Amit Goyal’s website.
16Details of the recursive training procedure and additional methodological clarifications are available in the external

appendix.
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Here, T represents the stock-time observations in the test sample.

4.2 Prediction Results

This section presents the results of the machine-learning (ML) models used to predict SAS measures.

We recall the motivations behind our approach. First, there is a delay in the release or unavailability

of real-time information about mutual fund portfolio holdings. Second, we aim to reverse engineer

mutual fund managers’ stock-picking decisions to learn from their stock selection skills.

Table 5 presents the out-of-sample prediction performance measures across the various machine

learning models we consider. The dependent variable is the logarithm of the stock active share,

with the predictors being macro variables and stock characteristics. The table is organized into

two panels: Panel I presents the results for the S&P500 index and Panel II covers the S&P400

index. Each panel is organized into three sub-panels: decile portfolios (.A), quintile portfolios (.B),

and tercile portfolios (.C), which correspond to different quantile groupings of stocks based on

the predicted variable. The DepVar (dependent variable) shows the actual values, while PredVar

(predicted variable) reflects the values predicted by each machine learning method. Other columns

include the coefficient of variation (CV), and two versions of out-of-sample R-squared metrics: the

traditional out-of-sample R2
OOST

and the modified out-of-sample R2
OOSM

, which accounts for bias

in predicting individual stock SAS.

Across the benchmark indices, the coefficient of variation (CV) tends to decrease as we move up

the quantiles. It is also lower for BigCap stocks reflecting for stock active shares what is commonly

recognized for stock return volatility. This stylized fact can be explained by several considerations.

On the one hand, BigCap stocks are generally more liquid and widely held, which stabilizes demand

and reduces the variability of SAS. Additionally, while SAS measures the demand for stocks by

institutional investors, it is indirectly linked to stock prices, as increased or concentrated demand

for a specific stock can potentially drive its price upward, and vice versa.

Focusing on Panel I, the results show consistency across different types of quantiles and

machine-learning methods. The modified R2 is generally positive, although it is negative for some
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quantiles and models. For example, in decile portfolios, R2 is negative for Q1 with GB, OLS, and

Elastic Net and for Q10 with OLS and Elastic Net. Despite these exceptions, models like DNN, RF,

and GB generally perform better. Regardless of the machine learning method, the R2 values tend

to increase gradually from the lower to the higher quantiles. For instance, in decile portfolios, the

modified R2 with RF ranges from 0.13 (Q1) to 0.34 (Q10), while with GB it ranges from 0.13 (Q2)

to 0.30 (Q10). OLS and Elastic Net show weaker performance, with R2 values ranging from 0.05

(Q2) to 0.20 (Q9) for OLS and 0.06 (Q2) to 0.21 (Q9) for Elastic Net. DNN shows the strongest

performance, with R2 values increasing from 0.03 (Q1) to 0.36 (Q10).

The same pattern is observed in quintile portfolios, where the top quintile (Q5) displays modified

R2 values of 0.36 (RF), 0.34 (GB), and 0.37 (DNN), and tercile portfolios, where the top tercile

(Q3) shows values of 0.39 (RF), 0.36 (GB), 0.16 (OLS and Elastic Net), and 0.38 (DNN). The

traditional R2 values are generally lower than the modified R2, as the modified version corrects for

bias in the prediction. Still, they follow a similar pattern across quantiles and ML methods.

Regarding proximity between actual SAS and predicted SAS, OLS and Elastic Net tend to show

the closest values in the top quantile portfolios. For example, the difference between the actual and

predicted values in Q10 is 0.06 for OLS and Elastic Net, compared to 0.43 for Random Forest, 0.24

for Gradient Boosting, and 0.31 for DNN.

Another important observation is the improvement in R2 values and the reduction in prediction

bias as the portfolio concentration decreases, i.e., when more assets are included in the portfolio.

For instance, with Random Forests, the modified R2 increases from 0.34 in the top decile to 0.36

in the top quintile and 0.39 in the top tercile. When all assets are included in a global portfolio, the

R2 is 0.48. Similarly, the prediction bias, which can be approximated by the difference between

the modified and traditional R2, decreases from 0.27 in the top decile to 0.15 in the top quintile

and 0.09 in the top tercile and is just 0.03 for the global portfolio. These improvements are even

more pronounced with DNN, where the bias decreases from 0.13 in the top decile to 0.01 in the

top tercile.17 In the global portfolio, the bias disappears entirely, as both R2 values equal 0.43.
17While the top decile portfolio was identified as the best candidate for implementing the SAS-Oracle strategy,

offering greater concentration with similar performance metrics to the top quintile and tercile portfolios, the recom-
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Panel II of Table 5 shows that the predictive quality for MidCap stocks is generally lower than for

S&P500, with small or negative modified R2 values across most quantiles and methods. However,

DNN and RF outperform, achieving modified R2 values of 13% and 7% for the top decile, 11%

and 9% for the top quintile, and 10% for the top tercile in both cases.

Gu et al. (2020) and Kaniel et al. (2023) also provide out-of-sampleR2 to assess the performance

of their machine learning specifications in predicting the monthly risk-adjusted returns out-of-

sample, for stocks and mutual funds, respectively. The R2 values achieved for the whole sample

range from -3.46% to 0.40% for the former and from -1.60% to 5.00% for the latter.18 While these

authors predict returns, we predict stock active shares, which reflect managers’ convictions about

asset values. Our predictive performance is superior in this context. In comparison, this suggests

that stock active shares may provide more reliable insights into managerial expertise and stock

selection than direct return predictions.

The predictions of SAS by machine learning methods are highly correlated, as shown in Figure

3, with correlations ranging between 0.75 and 0.89 when applied to S&P500 stocks. These

correlations vary between 0.71 and 0.82 for MidCap stocks.

Since the quantile portfolios in Table 5 are based on predicted SAS values, the PredVar column

should increase from the bottom to the top quantile, which is consistently observed across methods.

Similarly, the actual SAS values in the DepVar column show the same upward trend, confirming

that the SAS-feasible strategy aligns with the SAS-Oracle strategy. High correlations between

actual and predicted SAS values—ranging from 0.59 to 0.66 for BigCap, and 0.41 to 0.49 for

MidCap—further support the reliability of these predictions (Figure 3). These out-of-sample results

demonstrate model generalizability, reinforcing the SAS-feasible strategy, whose performance is

compared to the SAS-Oracle and other strategies in the next section.

mendation is more nuanced for the SAS-feasible strategy. Less concentrated portfolios, such as quintile or tercile, may
be preferred due to improved SAS predictability and reduced bias.

18See Table 1 in Gu et al. (2020) and Table 3 in Kaniel et al. (2023).
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5 Performance of the Machine Learning-based SAS Strategy

The SAS-feasible strategy uses machine learning to form portfolios by ranking stocks based on their

predicted SAS measure. The approach involves going long on the top-quantile portfolio of stocks

with the highest predicted SAS values. We use predictors measured at time t and a machine learning

model trained on data up to period t to anticipate the time-t stock active share. The strategy’s

financial performance is evaluated out-of-sample using real-time data, with performance metrics

including mean, standard deviation, skewness, kurtosis, Sharpe ratio, and adjusted Sharpe ratio.

We also report the average risk-adjusted return (alpha) relative to the Fama-French and momentum

factors, with standard errors calculated using the Newey-West HAC variance-covariance matrix to

account for heteroskedasticity and autocorrelation.

5.1 The SAS-feasible Investment Strategy with Quarterly Rebalancing

Table 6 provides summary statistics for the SAS-feasible investment strategy with quarterly re-

balancing. The table is organized into three blocks representing top-quantile portfolios (Top 10,

Top 5, Top 3) and five machine-learning methods (RF, GB, OLS, ENET, DNN), across two panels

corresponding to the benchmark indices (S&P500 and S&P400). For comparison, the table also

includes performance statistics for analyst recommendations (AR), the SAS-Oracle strategy (ORA)

based on actual SAS measures, and the benchmark index. The out-of-sample evaluation covers the

period from January 2018 to December 2023.

For all indices, the SAS-feasible strategy (Top 10, Top 5, Top 3 portfolios) consistently delivers

lower average returns than the SAS-Oracle portfolios but still significantly outperforms the bench-

mark index. For example, in the S&P500, the Top 10 DNN portfolio achieves an average return

of 1.39%, compared to 1.42% for the SAS-Oracle portfolio and 1.09% for the benchmark. This

trend is consistent across the S&P400 index, with SAS-feasible portfolios trailing the SAS-Oracle

in returns but comfortably exceeding the benchmark.

Regarding volatility, the SAS-feasible portfolios generally show lower or comparable volatility

to the benchmark index and the SAS-Oracle portfolios. For instance, in the S&P500, the Top
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10 DNN portfolio has a volatility of 5.02%, lower than both the SAS-Oracle (5.70%) and the

benchmark (5.21%). Similarly, across the S&P400 index, the SAS-feasible portfolios exhibit

moderate volatility, demonstrating better risk control compared to the benchmark.

Sharpe ratios indicate that the SAS-feasible strategy consistently delivers better risk-adjusted

performance than the benchmark across all indices, closely approaching that of the SAS-Oracle

strategy. In the S&P500, the Top 10 DNN portfolio achieves a Sharpe ratio of 0.25, outperforming

both the benchmark’s 0.18 and the SAS-Oracle’s 0.22. A similar trend is observed in the S&P400

index, where the SAS-feasible strategy outperforms the benchmark and remains competitive with

the SAS-Oracle strategy. This demonstrates that the SAS-feasible strategy provides strong risk-

adjusted returns, even with predicted rather than actual SAS values.

Alpha values reinforce the profitability of the SAS-feasible strategy, with consistently positive

alphas across all indices and portfolios. In the S&P400, for instance, the Top 10 DNN portfolio

achieves an alpha of 0.68%, surpassing the AR’s 0.18% and the benchmark’s -0.06%. This pattern

is similarly observed in the S&P500, where SAS-feasible portfolios generate significant alphas,

rivaling the SAS-Oracle portfolios and outperforming the benchmark indices.

We compare the performance of our SAS-feasible strategy with other machine learning-based

strategies for investing in stock or mutual fund portfolios. Gu et al. (2020) report annualized Sharpe

ratios ranging from -0.23 in the lowest decile to 0.81 in the highest decile for prediction-sorted stock

portfolios. Kaniel et al. (2023) report monthly Sharpe ratios from -0.23 to 0.15 for mutual fund

portfolios, and DeMiguel et al. (2023) show a monthly Sharpe ratio of up to 0.192 in a long-only

mutual fund portfolio. These comparisons demonstrate that the performance of our SAS-feasible

strategy is competitive with existing machine learning-based investment methods.

In summary, while the SAS-Oracle strategy yields slightly higher returns, the SAS-feasible

strategy still delivers superior returns and risk-adjusted performance compared to the benchmark.

The narrow performance gap between the SAS-feasible and SAS-Oracle portfolios highlights the

ML models’ robust learning ability, allowing them to closely replicate the performance of the

otherwise impractical SAS-Oracle strategy. SAS-feasible portfolios often have lower standard de-

22



viations, indicating better risk management, and consistently outperform the benchmark regarding

Sharpe ratios and alphas. The significant positive alphas suggest the strategy remains profitable,

even after considering transaction costs, which are likely low due to quarterly rebalancing. Figure

2 shows the sustained performance of machine learning-based portfolios over time.

Table 7 provides additional performance measures, further confirming the analysis presented

earlier. For instance, the comparison of the Top 10 DNN, Top 10 ORA, and Index portfolios

across the S&P500 andS&P400 indices shows that the DNN model consistently outperforms the

benchmark index in all panels, demonstrating superior risk-adjusted returns (Sortino, Information

Ratio) and better risk management (lower Drawdown and VaR). In the S&P500, the DNN portfolio

surpasses the ORA strategy, delivering higher Sortino and Information Ratios while maintaining

lower risk exposure. However, in the S&P400, while the ORA portfolio achieves better Sortino and

Information Ratios, the DNN portfolio still provides more robust risk management with a lower

Drawdown. These results highlight the machine-learning models’ ability to deliver competitive

returns and manage risk effectively, rivaling the infeasible SAS-Oracle strategy while consistently

outperforming the passive strategy across all benchmark indices.

5.2 SAS-feasible versus Analyst Recommendation Consensus

Analysts serve as information intermediaries, gathering, analyzing, and producing investment-

related insights for the broader community (Kothari et al.; 2016). Unlike mutual fund managers,

who trade on behalf of their clients and disclose their holdings ex-post to comply with regulations,

analysts provide ex-ante recommendations, allowing investors to act immediately on their advice.

Both analysts and fund managers bear reputational and financial risks, motivating them to exert

considerable effort in identifying valuable stocks. Thus, comparing the performance of portfolios

formed based on machine learning predictions of mutual fund holdings (SAS-feasible strategy) and

those based on analyst recommendations (AR strategy) is a worthwhile exercise.

In this section, we evaluate the performance of investment strategies that involve buying top

sorted stocks based on consensus analyst recommendations or machine learning-predicted SAS
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measures derived from mutual fund managers. Analysts regularly provide stock recommendations

ranging from 1 (strong buy) to 5 (sell). To facilitate comparison with SAS values, we transform

the original recommendation scores by subtracting the value from 6, ensuring that higher values

represent stronger stock valuations. This transformation allows a consistent interpretation of stocks

sorted based on transformed analyst recommendations or predicted SAS measures.

Figure 3 highlights the correlations between analyst recommendations and ML-predicted SAS

measures for different benchmark indices from January 2018 to December 2023. The results

indicate low but positive correlations, typically ranging from 0.1 to 0.2. Linear models such

as OLS and Elastic Net show slightly higher correlations with analyst recommendations than

non-linear machine learning models, with the strongest correlations observed in BigCap stocks.

Therefore, our predicted measure of mutual fund managers’ attention to stocks aligns with analysts’

consensus about stock valuation, though the two measures are far from being perfectly correlated.

We now turn to the investment performance comparison. The AR columns in Table 6 and

Table 7 report the performance of the AR strategy.19 Similar to the SAS-feasible strategy, the

AR strategy involves sorting stocks based on analyst consensus recommendations and investing

in the top quantile of stocks with the strongest buy recommendations, with quarterly rebalancing.

Despite performing well relative to the benchmark indices, the AR strategy falls short compared

to the SAS-feasible strategy. The average returns and alphas, as measured with the Fama-French

5 factors and the momentum factor, are significantly higher in the AR portfolio compared to the

benchmark index for S&P400. However, for the S&P500, the differences between the AR portfolio

and the benchmark index, even though positive, are not statistically significant at the standard level.

Across various metrics—average return, standard deviation, and Sharpe ratio— the SAS-feasible

and SAS-oracle portfolios consistently outperform the AR portfolios in the S&P400 (see Table 6

and A4). Results are more nuanced for the S&P500 index.

Across benchmark indices, the portfolios formed on lagged SAS (ORA 1, ORA 2, and ORA 3)

offer similar performance as AR portfolios. Portfolios constructed using lagged SAS for the
19Table A4 in appendix reports the results of tests of differences in mean return, Sharpe ratio, and alphas between

the SAS and AR portfolios.
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S&P400 index typically underperform relative to oracle SAS and machine learning-based SAS

portfolios, while exhibiting performance comparable to AR portfolios. When it comes to the

S&P500 index, only Oracle’s portfolios do much better than the other strategies, which yield about

the same performance results. The comparable performance between the MLSAS strategy and

the AR strategy, together with their similar challenges in surpassing the benchmark index, may be

explained by the greater informational efficiency of the BigCap market. Big companies are closely

monitored by the public, and any information pertaining to these stocks is rapidly reflected in their

prices; this may elucidate the challenge of significantly surpassing the benchmark for these stocks.

Additionally, Table 7 shows that the MLSAS portfolios, in particular the Top 10 DNN port-

folios, surpass the AR portfolios in both performance and risk management across the S&P500

and S&P400 indices. DNN portfolios achieve higher risk-adjusted returns and better control of

downside risks, despite slightly higher turnover in some cases. These results demonstrate that

machine learning strategies like DNN offer superior portfolio performance and risk management

compared to traditional analyst-based approaches.

In summary, while analyst recommendations offer valuable insights, machine learning-based

predictions of SAS measures derived from mutual fund managers provide superior investment

guidance, consistently yielding higher returns. However, this analysis highlights the ongoing

importance of analysts in delivering meaningful insights. Given the expertise required to surpass

analyst-driven strategies, it may still be worthwhile for investors to pay for access to high-quality

analyst advice. Our findings also underscore the advantages of active management, particularly

in the selection of MidCap stocks, which may exhibit lower informational efficiency relative to

BigCap stocks.

5.3 Which covariates matter?

We now examine the inner workings of the machine learning models to investigate the relative

importance of the input variables driving model performance. We use Local Interpretable Model-

agnostic Explanations (LIME), as introduced by Ribeiro et al. (2016). The objective of LIME is to
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identify an interpretable model that is locally faithful to the machine learning model’s prediction

function and understandable to humans, regardless of the features used by the model. LIME

identifies which features are most important in explaining individual predictions by approximating

the model locally with a simpler, interpretable representation. Additionally, it shows the direction of

each feature’s influence, revealing whether it contributed favorably or unfavorably to the predicted

value for a specific entity.

By aggregating explanations across all observations in the test sample, we can determine

the variables that primarily drive the model predictions. LIME’s detailed feature importance

information enables better comprehension of the machine learning models’ predictions, builds user

trust, and can be leveraged to improve model performance or communicate more effectively with

clients about portfolio outcomes.

Figures 4 illustrate the most important features the machine learning models identified following

quarterly retraining. The predictors are ranked such that the top 10 most important features are

listed from most to least important. Red bars indicate that a characteristic positively contributes to

the predicted value, while dark blue bars indicate negative contributions. The models show a high

level of agreement on the critical factors influencing stock selection, reinforcing the reliability of the

predictions. The key features can be broadly categorized into three groups. The first group relates to

past/recent performance measures, including the stock’s last period SAS value, momentum over 1,

12, or 36 months, and past Treynor and Sharpe ratios. These variables generally capture momentum

effects, as past top performers are expected to continue performing well. However, reversal effects

may appear when past top performers are predicted to underperform in the future.

The second group comprises macroeconomic predictors, such as the treasury bill rate (tbl),

default yield spread (dfy), book-to-market value of DJIA (bm), net equity expansion (ntis), and term

spread (tms). Both tbl and tms negatively predict future SAS values, suggesting that stocks favored

by managers tend to underperform when interest rates rise or term spreads expand. In contrast,

variables like bm, earnings-to-price ratio (E12), and dfy positively contribute to the predicted SAS

measure, indicating that stocks appreciated by fund managers are likely to benefit when these factors
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increase.

The third group includes signals of stock growth opportunities and risks, represented by variables

such as the convertible debt indicator (convind), market capitalization (mc), long-term debt growth

(lgr), Sin stock indicator (sin), 36-month rolling Sharpe Ratio (sr36m), industry-adjusted change in

asset turnover (chatoia), accruals volatility (stdacc), and sales-to-cash ratio (salecash). Consistent

with Gu et al. (2020), sin stocks appear unattractive to fund managers, as indicated by their negative

contribution to the predicted SAS measure.

6 Carbon Emissions and SAS Investment

Responsible investing has increasingly gained importance in investor performance criteria. How-

ever, the question of whether responsible investing, particularly with respect to carbon emissions,

impacts financial performance remains open.20 To address this issue, we extract carbon emissions

data for stocks in the benchmark indices (S&P400 and S&P500) from the Eurofidai database using

firm ISIN codes. We compute carbon emissions intensity by dividing the sum of scope 1 (direct)

and scope 2 (indirect) CO2 emissions by the firm’s market capitalization. A higher emission

intensity indicates that a firm produces more carbon emissions per dollar of market capitalization,

either directly or indirectly.21 Bolton and Kacperczyk (2023) and Aswani et al. (2023) provide

convincing arguments for the use of emission level and emission intensity respectively in studying

the market perception of the impact of firm emissions on climate change.22 Therefore, we also run

the same regressions but using carbon emissions level instead of carbon emissions intensity as our

main explanatory variable.
20Matsumura et al. (2014) find that increase in carbon emissions negatively affects the firm’s value for S&P500

firms; meaning that market penalizes firms for their carbon emissions. In contrast, Bolton and Kacperczyk (2021,
2023) find higher stock returns associated with higher levels and growth rates of carbon emissions for the US firms
and internationally, which they interpreted as investors demanding compensation for their exposure to carbon emission
risk. Furthermore, Aswani et al. (2023) using carbon intensity instead of carbon emissions, find no association between
emissions and returns.

21The data is winsorized at the 1% level to minimize the effect of outliers.
22Bolton and Kacperczyk (2023) argue that : ”What the world needs and aims for is first a reduction in carbon

emission levels, and second only an improvement in carbon efficiency.” Whereas Aswani et al. (2023)’s counterargument
is that: ”Emissions arise from a firm’s core operations and, absent significant short-term innovations in a firm’s
production process, unscaled emissions are largely determined by the quantity of goods produced and sold.
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We then examine the relationship between stock carbon emissions and fund manager conviction

about stock value, as measured by our SAS metric. We specify the following econometric model:

ln
(
SASi,t

)
= β0 + β1 ln

(
Carboni,t

)
+ γi + λt + εi,t (6)

where SASi,t is the stock i’s average SAS measure during year t, and Carboni,t is either the stock’s

carbon emissions intensity or carbon emissions level. The terms γi and λt represent stock and time

fixed effects, respectively. β1 captures the elasticity of a stock’s SAS with respect to its carbon

emissions.

Panel A (respectively, Panel B) of Table 8 shows the regression results with carbon emissions

intensity (respectively, carbon emissions level) as main explanatory variable. The elasticity of

the SAS measure to emission intensity is negative and statistically significant, whereas it is non-

significant or significantly positive when emission level is used. The negative coefficient of emission

intensity suggests that stocks heavily used by fund managers to deviate from benchmark indices

and contribute to overperformance also tend to have lower emission intensity. This means that a

stock improvement in emission efficiency (a decrease of emission intensity) increases its likelihood

to be selected into SAS portfolio. For MidCap and BigCap stocks, the effect is even stronger: a

10% increase in emission intensity results in a 2.9% and 1.5% decrease in their SAS measures,

respectively. These shifts in SAS values due to changes in emission intensity are substantial enough

to influence the selection or exclusion of stocks from SAS portfolios.

In contrast, for BigCap stocks, a 10% increase in carbon emissions level within a firm leads

respectively to 0.6% increase in its SAS measure. The positive coefficient of emission level

suggests that higher carbon emissions level predicts higher stocks SAS value and therefore higher

stock performance. This interpretation aligns with the view that stocks with higher level of carbon

emissions earn a positive carbon premium that reflects exposure to climate related concerns and

their implied risks (physical, transition, or regulatory risks) to investors (Bolton and Kacperczyk;

2021, 2023). For MidCap stocks, the effect is not significant.
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While we attempt to control for endogeneity using stock and time fixed effects, there remains

a potential for bias in the estimated elasticities. Nevertheless, our findings strongly suggest that

the SAS strategy is compatible with ESG (Environmental, Social, and Governance) criteria as it

reduces carbon intensity of the portfolio, and it can be used to achieve both financial performance

and sustainable investment objectives.

7 Conclusion

This study demonstrates that mutual fund managers collectively possess stock-picking skills that

outperform passive benchmarks and consensus-based strategies from analyst recommendations. By

applying machine learning techniques to mutual fund holdings, investors can effectively leverage

these skills. Our analysis shows that constructing a portfolio of stocks with the most significant

deviations from the benchmark leads to superior performance, as measured by the adjusted Sharpe

ratio, while delivering positive risk-adjusted returns (i.e., alphas) after accounting for systematic

risk exposures such as Fama-French five factors and momentum factor. Thus, by analyzing mutual

fund stock holdings, we demonstrate that investors can harness fund manager expertise through

machine learning.

The evaluation of the stock active share’s feasible investment strategy does not account for

transaction costs, such as bid-ask spreads, brokerage commissions, or the market impact of trading.

While these costs are often overlooked in studies due to their quantification challenges, they play a

critical role in the real-world profitability of investment strategies. Future research should prioritize

incorporating these factors into performance assessments, as advocated by Ferson (2010).

We also examined the relationship between stock active share and firm carbon emissions level

and intensity, finding both a negative correlation for emission intensity and a positive correlation

for emission level. This suggests that the financial performance of the stock active share’s feasible

investment strategy may be compatible with environmental performance. However, we approach

this interpretation cautiously, as the observed association may hide various causal effects that

warrant further investigations.
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Table 1: Descriptive statistics of fund portfolio weights and deviations from benchmark
For each benchmark index (S&P500 in Panel I and S&P400 in Panel II), the table displays descriptive statistics of the
stock weight disclosed by the mutual fund, the stock weight that would be disclosed if the mutual fund invested the
same weight as in the benchmark index, and the deviations from benchmark (DFB and ADFB), considering all mutual
funds, all benchmark index constituents with a mutual fund holding disclosure, and across all time periods. Reported
statistics are the mean, standard deviation, minimum, percentiles, maximum, and correlation between DFB and ADFB.
Each statistic is a single value that describes the typical weight or deviation from benchmark that mutual funds have
achieved in a stock, averaged over time and across different mutual funds. The sample period runs from August 2007
to December 2023.

Statistics Count Mean Std.Dev. Min 5th pct. 10th pct. 25th pct. Median 75th pct. 90th pct. 95th pct. Max corr(DFB,ADFD)

Panel I: S&P500 benchmark index

A. Disaggregate weight of stock holding in mutual fund portfolio (by month, mutual fund, and stock)

Full sample 12696772 0.848 1.025 -4.350 0.030 0.050 0.140 0.480 1.190 2.120 2.870 54.290 -
Subsample DFB> 0 9353057 1.064 1.085 0.010 0.080 0.130 0.290 0.740 1.480 2.430 3.150 54.290 -
Subsample DFB< 0 3343715 0.242 0.441 -4.350 0.010 0.020 0.040 0.090 0.240 0.660 1.020 7.370 -

B. Disaggregate weight of stock holding in benchmark index (by month, mutual fund, and stock)

Full sample 12696772 0.314 0.511 0.003 0.031 0.041 0.066 0.129 0.330 0.852 1.259 7.372 -
Subsample DFB> 0 9353057 0.273 0.428 0.003 0.030 0.040 0.063 0.120 0.288 0.702 1.079 7.372 -
Subsample DFB< 0 3343715 0.428 0.679 0.003 0.034 0.045 0.076 0.165 0.473 1.164 1.632 7.372 -

C. Disaggregate Deviation from Benchmark (by month, mutual fund, and stock) - DFB

Full sample 12696772 0.534 0.911 -7.362 -0.258 -0.092 -0.004 0.226 0.852 1.664 2.288 51.828 0.886
Subsample DFB> 0 9353057 0.792 0.907 0.000 0.019 0.043 0.151 0.491 1.115 1.932 2.574 51.828 1.000
Subsample DFB< 0 3343715 -0.187 0.382 -7.362 -0.827 -0.503 -0.180 -0.055 -0.019 -0.007 -0.004 -0.000 -1.000

D. Disaggregate Absolute Deviation from Benchmark (by month, mutual fund, and stock) - ADFB

Full sample 12696772 0.632 0.846 0.000 0.008 0.018 0.068 0.301 0.892 1.688 2.315 51.828 -
Subsample DFB> 0 9353057 0.792 0.907 0.000 0.019 0.043 0.151 0.491 1.115 1.932 2.574 51.828 -
Subsample DFB< 0 3343715 0.187 0.382 0.000 0.004 0.007 0.019 0.055 0.180 0.503 0.827 7.362 -

Panel II: S&P400 benchmark index

A. Disaggregate weight of stock holding in mutual fund portfolio (by month, mutual fund, and stock)

Full.sample 5816383 0.472 0.646 -5.680 0.010 0.020 0.050 0.210 0.650 1.270 1.750 20.820 -
Subsample DFB> 0 2699040 0.905 0.733 0.010 0.190 0.250 0.400 0.710 1.170 1.810 2.300 20.820 -
Subsample DFB< 0 3117343 0.098 0.105 -5.680 0.010 0.010 0.020 0.060 0.140 0.230 0.300 1.660 -

B. Disaggregate weight of stock holding in benchmark index (by month, mutual fund, and stock)

Full sample 5816383 0.281 0.139 0.001 0.107 0.130 0.180 0.255 0.352 0.468 0.549 1.702 -
Subsample DFB> 0 2699040 0.265 0.132 0.001 0.101 0.123 0.169 0.240 0.331 0.442 0.520 1.702 -
Subsample DFB< 0 3117343 0.295 0.143 0.001 0.113 0.137 0.192 0.270 0.369 0.488 0.569 1.702 -

C. Disaggregate Deviation from Benchmark (by month, mutual fund, and stock) - DFB

Full sample 5816383 0.191 0.644 -5.922 -0.388 -0.308 -0.186 -0.028 0.371 0.979 1.446 20.371 0.902
Subsample DFB> 0 2699040 0.640 0.704 0.000 0.020 0.046 0.150 0.422 0.883 1.500 1.990 20.371 1.000
Subsample DFB< 0 3117343 -0.198 0.137 -5.922 -0.456 -0.380 -0.273 -0.174 -0.095 -0.042 -0.021 -0.000 -1.000

D. Disaggregate Absolute Deviation from Benchmark (by month, mutual fund, and stock) - ADFB

Full sample 5816383 0.403 0.537 0.000 0.021 0.043 0.109 0.226 0.453 0.981 1.446 20.371 -
Subsample DFB> 0 2699040 0.640 0.704 0.000 0.020 0.046 0.150 0.422 0.883 1.500 1.990 20.371 -
Subsample DFB< 0 3117343 0.198 0.137 0.000 0.021 0.042 0.095 0.174 0.273 0.380 0.456 5.922 -
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Table 2: Descriptive statistics of stock active shares
For each benchmark index ( S&P500 in Panel I and S&P400 in Panel II), the table displays descriptive statistics of
stock active shares (NSAS and SAS), considering all constituents with a mutual fund holding disclosure, and across all
time periods. Reported statistics are the mean, standard deviation, minimum, percentiles, maximum, and correlation
between NSAS and SAS.Each statistic is a single value that describes the typical active share of a stock, averaged over
time. The sample period runs from August 2007 to December 2023.

Statistics Count Mean Std.Dev. Min 5th pct. 10th pct. 25th pct. Median 75th pct. 90th pct. 95th pct. Max corr(NSAS,SAS)

Panel I: S&P500 benchmark index

A. Aggregate weight of stock holdings in mutual fund portfolios (by month and stock)

Full sample 97546 110.342 174.329 0.000 3.960 8.190 23.570 63.175 127.968 243.845 374.493 6010.120 -
Subsample NSAS> 0 96680 107.264 154.947 0.010 4.100 8.300 23.598 62.870 126.760 238.212 362.652 4585.700 -
Subsample NSAS< 0 866 453.887 790.251 0.000 0.020 0.060 12.012 221.780 547.790 968.170 1502.015 6010.120 -

B. Aggregate weight of stock holding in benchmark index (by month and stock)

Full sample 97546 40.837 137.272 0.007 0.410 0.982 3.252 9.242 25.945 81.534 178.674 6752.325 -
Subsample NSAS> 0 96680 36.524 100.350 0.007 0.423 0.995 3.249 9.171 25.392 76.803 160.998 4536.427 -
Subsample NSAS< 0 866 522.446 874.725 0.009 0.050 0.095 14.783 255.862 643.725 1175.080 1898.332 6752.325 -

C. Aggregate Deviation from Benchmark (by month and stock) - NSAS

Full sample 97546 69.504 76.324 -781.690 2.588 5.861 17.583 49.259 96.945 159.114 208.568 997.837 0.780
Subsample NSAS> 0 96680 70.741 74.715 0.000 3.135 6.377 18.208 49.969 97.550 159.653 209.283 997.837 0.938
Subsample NSAS< 0 866 -68.559 117.211 -781.690 -322.992 -206.094 -86.177 -16.834 -0.790 -0.026 -0.009 -0.000 -0.745

D. Aggregate Absolute Deviation from Benchmark (by month and stock) - SAS
Full sample 97546 82.305 101.831 0.000 3.356 6.894 19.852 54.042 106.987 185.961 257.127 2898.011 -
Subsample NSAS> 0 96680 82.183 102.562 0.000 3.334 6.854 19.871 54.069 106.778 184.845 254.669 2898.011 -
Subsample NSAS< 0 866 83.107 96.888 0.001 3.494 7.166 19.732 53.835 108.570 192.329 273.444 1300.080 -

Panel II: S&P400 benchmark index

A. Aggregate weight of stock holdings in mutual fund portfolios (by month and stock)

Full sample 79349 34.601 31.883 0.000 1.870 3.700 9.780 25.870 50.160 77.232 97.210 296.580 -
Subsample NSAS> 0 66738 37.399 32.462 0.030 2.320 4.510 12.060 29.530 53.470 80.700 100.551 296.580 -
Subsample NSAS< 0 12611 19.794 23.634 0.000 0.460 1.710 4.700 11.170 25.710 51.050 70.025 236.230 -

B. Aggregate weight of stock holding in benchmark index (by month and stock)

Full sample 79349 20.595 21.869 0.021 0.742 1.683 5.473 13.936 28.182 47.656 63.594 369.237 -
Subsample NSAS> 0 66738 19.614 20.282 0.029 0.746 1.597 5.169 13.487 27.277 45.402 59.627 239.366 -
Subsample NSAS< 0 12611 25.787 28.293 0.021 0.703 2.532 7.048 16.474 34.303 62.083 83.720 369.237 -

C. Aggregate Deviation from Benchmark (by month and stock) - NSAS

Full sample 79349 14.006 18.268 -141.617 -6.556 -2.037 1.662 9.406 22.563 37.938 49.248 162.099 0.685
Subsample NSAS> 0 66738 17.785 17.188 0.000 0.710 1.515 4.726 12.875 25.625 40.788 51.812 162.099 0.825
Subsample NSAS< 0 12611 -5.993 7.796 -141.617 -20.328 -14.901 -8.087 -3.365 -1.080 -0.263 -0.112 -0.000 -0.611

D. Aggregate Absolute Deviation from Benchmark (by month and stock) - SAS
Full sample 79349 29.524 26.300 0.000 1.470 3.124 8.647 22.663 43.168 65.324 81.224 220.468 -
Subsample NSAS> 0 66738 29.661 26.342 0.000 1.510 3.184 8.821 22.792 43.328 65.533 81.596 220.468 -
Subsample NSAS< 0 12611 29.126 26.174 0.000 1.370 2.957 8.185 22.317 42.740 64.673 80.190 214.320 -
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Table 3: Performance of the SAS-Oracle strategy - with quarterly rebalancing.
This table shows the performance of the SAS-Oracle strategy implemented by using the real value of stocks SAS values as computed from observed data. The
strategy consists of using the computed market-wide absolute deviation from the benchmark for each stock at time t as if it was known, then sorting the stocks into
quantile portfolios based on their computed SAS values. The formed portfolio is held for three months and rebalanced in the beginning of each quarter. Oracle
portfolios are formed using ex-ante the observed (ex-post) measure of stocks’ SAS computed using mutual fund holdings when released to sort stocks into quantile
portfolios. The evaluation period goes from October 2007 to December 2023.

Decile portfolios Quintile portfolios Tercile portfolios Benchmark

Statistics Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Index

Panel I: S&P500 benchmark index

Mean 0.817 1.110 1.233 1.426 1.146 1.407 1.288 1.567 1.548 1.561 0.986 1.345 1.283 1.435 1.560 1.151 1.310 1.530 0.864
Std.Dev. 7.102 6.167 5.931 5.375 5.094 5.215 5.188 4.888 4.637 4.243 6.474 5.509 5.087 4.940 4.351 6.066 5.094 4.513 4.662
Sharpe.Ratio 0.104 0.168 0.195 0.251 0.210 0.255 0.233 0.305 0.317 0.350 0.140 0.230 0.237 0.275 0.341 0.177 0.242 0.322 0.169
Skew 0.102 -0.116 0.068 -0.279 -0.476 -0.404 -0.370 -0.103 -0.196 -0.228 -0.059 -0.193 -0.455 -0.259 -0.227 -0.087 -0.396 -0.236 -0.554
Kurtosis 3.448 3.092 3.376 1.745 1.536 1.739 1.482 0.579 0.599 0.324 3.018 2.270 1.665 0.721 0.485 2.999 1.588 0.509 0.810
Adjusted.Sharpe.Ratio 0.104 0.166 0.194 0.247 0.206 0.249 0.229 0.303 0.313 0.345 0.140 0.227 0.232 0.271 0.336 0.176 0.237 0.317 0.166
Alpha -0.133 0.221 0.274 0.547 0.254 0.495 0.408 0.671 0.697 0.744 0.069 0.428 0.382 0.547 0.728 0.231 0.413 0.675 -0.018
s.e.alpha. 0.187 0.128 0.116 0.151 0.094 0.100 0.091 0.108 0.105 0.117 0.128 0.113 0.072 0.085 0.093 0.113 0.075 0.081 0.017

Panel II: S&P400 benchmark index

Mean 1.270 1.374 1.341 1.306 1.370 1.547 1.385 1.485 1.802 2.363 1.354 1.330 1.469 1.441 2.107 1.366 1.425 1.871 0.864
Std.Dev. 8.286 7.024 6.321 6.236 6.243 5.952 5.904 5.593 5.633 5.428 7.381 6.155 5.967 5.663 5.407 6.810 5.884 5.407 5.886
Sharpe.Ratio 0.144 0.185 0.200 0.197 0.207 0.247 0.222 0.252 0.306 0.421 0.173 0.204 0.233 0.241 0.375 0.189 0.229 0.332 0.134
Skew 1.030 0.119 0.065 -0.253 0.194 -0.325 -0.342 -0.317 -0.268 -0.067 0.475 -0.196 -0.133 -0.331 -0.157 0.252 -0.191 -0.235 -0.567
Kurtosis 7.692 3.279 2.516 1.253 2.910 1.415 1.558 0.551 0.792 0.318 4.778 1.422 1.856 0.965 0.530 3.400 1.610 0.560 2.033
Adjusted.Sharpe.Ratio 0.147 0.185 0.200 0.195 0.208 0.243 0.218 0.248 0.301 0.418 0.174 0.202 0.231 0.237 0.370 0.190 0.227 0.327 0.132
Alpha 0.270 0.380 0.381 0.354 0.441 0.629 0.446 0.569 0.838 1.413 0.358 0.374 0.546 0.514 1.150 0.382 0.502 0.924 -0.067
s.e.alpha. 0.195 0.143 0.151 0.139 0.148 0.138 0.116 0.136 0.180 0.203 0.119 0.116 0.114 0.114 0.178 0.095 0.096 0.148 0.095
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Table 4: Details of characteristics
This table lists the explanatory variables used in our machine learning models to predict stock selection into SAS
portfolio. The variables are inspired by Green et al. (2017) and Gu et al. (2020).

No. Acronym Firm Characteristic Paper’s author(s) Year, Journal Data Source Frequency

Panel A: Stock predictors

1 absacc Absolute accruals Bandyopadhyay, Huang& Wirjanto 2010, WP Compustat Annual
2 acc Working capital accruals Sloan 1996, TAR Compustat Annual
3 age # years since first Compustat coverage Jiang, Lee & Zhang 2005, RAS Compustat Annual
4 agr Asset growth Cooper, Gulen & Schill 2008, JF Compustat Annual
5 beta12m 12-month rolling market risk’s exposure Bacon 2009, WP CRSP Monthly
6 beta24m 24-month rolling market risk’s exposure Bacon 2009, WP CRSP Monthly
7 beta36m 36-month rolling market risk’s exposure Bacon 2009, WP CRSP Monthly
8 bms Book-to-market Rosenberg, Reid & Lanstein 1985, JPM Compustat+CRSP Annual
9 bm ia Industry-adjusted book to market Asness, Porter & Stevens 2000, WP Compustat+CRSP Annual
10 cash Cash holdings Palazzo 2012, JFE Compustat Quarterly
11 cashdebt Cash flow to debt Ou & Penman 1989, JAE Compustat Annual
12 cashpr Cash productivity Chandrashekar & Rao 2009, WP Compustat Annual
13 cfp Cash flow to price ratio Desai, Rajgopal & Venkatachalam 2004, TAR Compustat Annual
14 cfp ia Industry-adjusted cash flow to price ratio Asness, Porter & Stevens 2000, WP Compustat Annual
15 chatoia Industry-adjusted change in asset turnover Soliman 2008, TAR Compustat Annual
16 chcsho Change in shares outstanding Pontiff & Woodgate 2008, JF Compustat Annual
17 chempia Industry-adjusted change in employees Asness, Porter & Stevens 1994, WP Compustat Annual
18 chinv Change in inventory Thomas & Zhang 2002, RAS Compustat Annual
19 chmom Change in 6-month momentum Gettleman & Marks 2006, WP CRSP Monthly
20 chpmia Industry-adjusted change in profit margin Soliman 2008, TAR Compustat Annual
21 chtx Change in tax expense Thomas & Zhang 2011, JAR Compustat Quarterly
22 cinvest Corporate investment Titman, Wei & Xie 2004, JFQA Compustat Quarterly
23 convind Convertible debt indicator Valta 2016, JFQA Compustat Annual
24 currat Current ratio Ou & Penman 1989, JAE Compustat Annual
25 depr Depreciation / PP&E Holthausen & Larcker 1992, JAE Compustat Annual
26 divi Dividend initiation Michaely, Thaler & Womack 1995, JF Compustat Annual
27 divo Dividend omission Michaely, Thaler & Womack 1995, JF Compustat Annual
28 dy Dividend to price Litzenberger & Ramaswamy 1982, JF Compustat Annual
29 egr Growth in common shareholder equity Richardson, Sloan, Soliman & Tuna 2005, JAE Compustat Annual
30 ep Earnings to price Basu 1977, JF Compustat Annual
31 gma Gross profitability Novy-Marx 2013, JFE Compustat Annual
32 grCAPX Growth in capital expenditures Anderson & Garcia-Feijoo 2006, JF Compustat Annual
33 herf Industry sales concentration Hou & Robinson 2006, JF Compustat Annual
34 hire Employee growth rate Bazdresch, Belo & Lin 2014, JPE Compustat Annual
35 invest Capital expenditures and inventory Chen & Zhang 2010, JF Compustat Annual
36 ir12m 12-month rolling information Ratio Bacon 2009, WP CRSP Monthly
37 ir24m 24-month rolling information Ratio Bacon 2009, WP CRSP Monthly
38 ir36m 36-month rolling information Ratio Bacon 2009, WP CRSP Monthly
39 lev Leverage Bhandari 1988, JF Compustat Annual
40 lgr Growth in long-term debt Richardson, Sloan, Soliman & Tuna 2005, JAE Compustat Annual
41 maxret Maximum daily return Bali, Cakici & Whitelaw 2011, JFE CRSP Monthly
42 mc Market value of common equity (csho*prcc f) Banz 1981, JFE CRSP Monthly
43 mom12m 12-month momentum Jegadeesh 1990, JF CRSP Monthly
44 mom1m 1-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
45 mom36m 36-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
46 mom6m 6-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
47 ms Financial statement score Mohanram 2005, RAS Compustat Quarterly
48 mve Logarithm of firm size Banz 1981, JFE CRSP Monthly
49 mve ia Industry-adjusted size Asness, Porter & Stevens 2000, WP Compustat Annual
50 nincr Number of earnings increases Barth, Elliott & Finn 1999, JAR Compustat Quarterly
51 operprof Operating profitability Fama & French 2015, JFE Compustat Annual
52 orgcap Organizational capital Eisfeldt & Papanikolaou 2013, JF Compustat Annual
53 pchcapx ia Industry adjusted % change in capital expenditures Abarbanell & Bushee 1998, TAR Compustat Annual
54 pchcurrat % change in current ratio Ou & Penman 1989, JAE Compustat Annual
55 pchdepr % change in depreciation Holthausen & Larcker 1992, JAE Compustat Annual
56 pchgm pchsale % change in gross margin - % change in sales Abarbanell & Bushee 1998, TAR Compustat Annual
57 pchquick % change in quick ratio Ou & Penman 1989, JAE Compustat Annual
58 pchsale pchinvt % change in sales - % change in inventory Abarbanell & Bushee 1998, TAR Compustat Annual
59 pchsale pchrect % change in sales - % change in A/R Abarbanell & Bushee 1998, TAR Compustat Annual
60 pchsale pchxsga % change in sales - % change in SG&A Abarbanell & Bushee 1998, TAR Compustat Annual
61 pchsaleinv % change sales-to-inventory Ou & Penman 1989, JAE Compustat Annual
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Table 4: Details of characteristics (continued)
This table lists the explanatory variables used in our machine learning models to predict stock selection into SAS
portfolio. The variables are inspired by Green et al. (2017) and Gu et al. (2020).

No. Acronym Firm Characteristic Paper’s author(s) Year, Journal Data Source Frequency

62 pctacc Percent accruals Hafzalla, Lundholm & Van Winkle 2011, TAR Compustat Annual
63 quick Quick ratio Ou & Penman 1989, JAE Compustat Annual
64 rd R&D increase Eberhart, Maxwell & Siddique 2004, JF Compustat Annual
65 rd mve R&D to market capitalization Guo, Lev & Shi 2006, JBFA Compustat Annual
66 rd sale R&D to sales Guo, Lev & Shi 2006, JBFA Compustat Annual
67 realestate Real estate holdings Tuzel 2010, RFS Compustat Annual
68 roaq Return on assets Balakrishnan, Bartov & Faurel 2010, JAE Compustat Quarterly
69 roavol Earnings volatility Francis, LaFond, Olsson & Schipper 2004, TAR Compustat Quarterly
70 roeq Return on equity Hou, Xue & Zhang 2015, RFS Compustat Quarterly
71 roic Return on invested capital Brown & Rowe 2007, WP Compustat Annual
72 rsup Revenue surprise Kama 2009, JBFA Compustat Quarterly
73 salecash Sales to cash Ou & Penman 1989, JAE Compustat Annual
74 saleinv Sales to inventory Ou & Penman 1989, JAE Compustat Annual
75 salerec Sales to receivables Ou & Penman 1989, JAE Compustat Annual
76 secured Secured debt Valta 2016, JFQA Compustat Annual
77 securedind Secured debt indicator Valta 2016, JFQA Compustat Annual
78 sgr Sales growth Lakonishok, Shleifer & Vishny 1994, JF Compustat Annual
79 sic 2 2-digit SIC code Green, Hand, & Zhang 2017, RFS Compustat Annual
80 sin Sin stocks Hong & Kacperczyk 2009, JFE Compustat Annual
81 sp Sales to price Barbee, Mukherji, & Raines 1996, FAJ Compustat Annual
82 sr12m 12-month rolling Sharpe Ratio Bacon 2009, WP CRSP Monthly
83 sr24m 24-month rolling Sharpe Ratio Bacon 2009, WP CRSP Monthly
84 sr36m 36-month rolling Sharpe Ratio Bacon 2009, WP CRSP Monthly
85 stdacc Accrual volatility Bandyopadhyay, Huang & Wirjanto 2010, WP Compustat Quarterly
86 stdcf Cash flow volatility Huang 2009, JEF Compustat Quarterly
87 tang Debt capacity/firm tangibility Almeida & Campello 2007, RFS Compustat Annual
88 tb Tax income to book income Lev & Nissim 2004, TAR Compustat Annual
89 tr12m 12-month rolling Treynor Ratio Bacon 2009, WP CRSP Monthly
90 tr24m 24-month rolling Treynor Ratio Bacon 2009, WP CRSP Monthly
91 tr36m 36-month rolling Treynor Ratio Bacon 2009, WP CRSP Monthly

Panel B: Macroeconomic predictors

92 D12 Log dividend to price ratio Goyal & Welch 2007, RFS CRSP Monthly
93 E12 Log earning to price ratio Goyal & Welch 2007, RFS CRSP Monthly
94 bm Book value to market value for the DJIA Goyal & Welch 2007, RFS CRSP Monthly
95 dfy Default Yield Spread Goyal & Welch 2007, RFS CRSP Monthly
96 ntis Net Equity Expansion Goyal & Welch 2007, RFS CRSP Monthly
97 tbl Treasury-bill rates Goyal & Welch 2007, RFS CRSP Monthly
98 tms Term Spread Goyal & Welch 2007, RFS CRSP Monthly
99 svar Stock Variance Goyal & Welch 2007, RFS CRSP Monthly
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Table 5: Out-of-sample measures of prediction performance
This table shows goodness-of-fit summary statistics of the machine learning models. The dependent variable is the logarithm of SAS value, and predictors are
macrovariables and stock characteristics summarized in Table 4. We consider using each benchmark index separately. The following summary statistics are
displayed: Quantile (decile, quintile, tercile) portfolio number, coefficient of variation of the dependent variable (CV) modified out-of-sample r-squared (R2

OOSM
)

defined in equation (5), traditional out-of-sample r-squared (R2
OOST

) defined in equation (4). Quantile portfolios are formed by sorting stocks based on the predicted
variable. The initial training period is from October 2007 to December 2017. The training is updated recursively every quarter by expanding the training period,
and the testing period is a quarter ahead in the future. All the statistics are computed over the out-of-sample prediction period from January 2018 to Dec. 2023.

Random Forest Gradient Boosting OLS Elastic Net Deep Neural Network

DepVar PredVar CV R2
OOSM

R2
OOST

DepVar PredVar CV R2
OOSM

R2
OOST

DepVar PredVar CV R2
OOSM

R2
OOST

DepVar PredVar CV R2
OOSM

R2
OOST

DepVar PredVar CV R2
OOSM

R2
OOST

Panel I: S&P500 benchmark index

I.A. Decile portfolios

1 3.33 3.28 0.24 0.13 0.12 3.29 3.37 0.24 -0.04 -0.06 3.37 3.73 0.24 -0.09 -0.29 3.37 3.74 0.24 -0.08 -0.29 3.32 3.47 0.25 0.03 -0.01
2 3.71 3.60 0.21 0.20 0.18 3.70 3.80 0.20 0.13 0.11 3.68 3.88 0.20 0.05 -0.03 3.68 3.88 0.20 0.06 -0.01 3.71 3.82 0.20 0.00 -0.02
3 3.88 3.76 0.19 0.24 0.21 3.86 3.96 0.19 0.12 0.10 3.85 3.95 0.19 0.07 0.05 3.85 3.95 0.19 0.09 0.07 3.85 3.98 0.19 0.09 0.06
4 3.98 3.88 0.19 0.25 0.23 3.98 4.08 0.19 0.14 0.13 3.98 4.01 0.19 0.08 0.08 3.98 4.02 0.19 0.09 0.09 3.98 4.10 0.19 0.10 0.08
5 4.11 3.99 0.19 0.27 0.25 4.11 4.17 0.18 0.16 0.15 4.09 4.07 0.19 0.12 0.12 4.09 4.07 0.19 0.13 0.13 4.11 4.20 0.18 0.12 0.10
6 4.22 4.10 0.18 0.25 0.22 4.22 4.27 0.18 0.13 0.12 4.20 4.14 0.18 0.15 0.14 4.21 4.14 0.18 0.15 0.14 4.22 4.30 0.18 0.15 0.14
7 4.35 4.22 0.18 0.26 0.23 4.35 4.39 0.18 0.18 0.17 4.35 4.23 0.18 0.15 0.12 4.35 4.22 0.18 0.16 0.13 4.35 4.41 0.18 0.19 0.18
8 4.53 4.36 0.18 0.27 0.23 4.54 4.54 0.17 0.18 0.18 4.54 4.35 0.18 0.18 0.12 4.54 4.34 0.18 0.19 0.13 4.52 4.56 0.18 0.23 0.23
9 4.81 4.56 0.17 0.26 0.16 4.82 4.74 0.16 0.21 0.20 4.80 4.55 0.16 0.20 0.10 4.80 4.55 0.16 0.21 0.10 4.82 4.76 0.16 0.25 0.25

10 5.37 4.94 0.16 0.34 0.07 5.42 5.18 0.15 0.30 0.22 5.42 5.36 0.15 -0.49 -0.49 5.42 5.36 0.15 -0.50 -0.50 5.41 5.10 0.16 0.36 0.23

I.B. Quintile portfolios

1 3.52 3.44 0.23 0.20 0.19 3.50 3.59 0.23 0.10 0.09 3.52 3.80 0.23 -0.00 -0.13 3.52 3.81 0.23 0.01 -0.12 3.51 3.65 0.23 0.07 0.04
2 3.93 3.82 0.19 0.25 0.22 3.92 4.02 0.19 0.14 0.12 3.92 3.98 0.19 0.08 0.07 3.91 3.98 0.19 0.09 0.08 3.92 4.04 0.19 0.10 0.08
3 4.16 4.04 0.18 0.27 0.24 4.16 4.22 0.18 0.15 0.14 4.15 4.11 0.19 0.14 0.14 4.15 4.11 0.19 0.14 0.14 4.16 4.25 0.18 0.14 0.13
4 4.44 4.29 0.18 0.28 0.24 4.44 4.46 0.18 0.19 0.19 4.44 4.28 0.18 0.17 0.14 4.44 4.28 0.18 0.18 0.15 4.43 4.48 0.18 0.22 0.22
5 5.09 4.75 0.17 0.36 0.21 5.11 4.96 0.17 0.34 0.31 5.11 4.95 0.17 -0.02 -0.05 5.11 4.95 0.17 -0.02 -0.06 5.11 4.93 0.17 0.37 0.33

I.C. Tercile portfolios

1 3.67 3.57 0.22 0.25 0.24 3.65 3.74 0.22 0.16 0.14 3.66 3.87 0.22 0.06 -0.01 3.66 3.87 0.22 0.07 -0.00 3.65 3.79 0.22 0.12 0.10
2 4.16 4.04 0.19 0.27 0.25 4.16 4.22 0.18 0.17 0.16 4.15 4.11 0.19 0.14 0.14 4.15 4.11 0.19 0.15 0.15 4.16 4.25 0.18 0.16 0.14
3 4.85 4.58 0.18 0.39 0.30 4.87 4.78 0.18 0.36 0.35 4.86 4.70 0.18 0.16 0.12 4.87 4.70 0.18 0.16 0.13 4.86 4.77 0.18 0.38 0.37

All 4.23 4.07 0.23 0.48 0.45 4.23 4.25 0.23 0.44 0.44 4.23 4.23 0.23 0.33 0.33 4.23 4.23 0.23 0.33 0.33 4.23 4.27 0.23 0.43 0.43

Panel II: S&P400 benchmark index

II.A. Decile portfolios

1 2.70 2.25 0.32 -0.07 -0.35 2.72 2.30 0.32 -0.17 -0.40 2.65 2.80 0.32 -0.06 -0.08 2.64 2.81 0.33 -0.03 -0.07 2.68 2.53 0.32 -0.12 -0.14
2 2.97 2.53 0.28 -0.01 -0.30 2.97 2.61 0.28 -0.16 -0.35 2.88 2.96 0.28 -0.00 -0.01 2.88 2.96 0.28 0.03 0.02 2.86 2.89 0.28 -0.14 -0.15
3 3.13 2.68 0.27 0.02 -0.27 3.10 2.76 0.27 -0.08 -0.24 3.05 3.06 0.26 0.02 0.02 3.04 3.06 0.26 0.06 0.06 3.07 3.10 0.26 -0.10 -0.10
4 3.24 2.79 0.26 0.05 -0.25 3.19 2.87 0.25 -0.09 -0.25 3.18 3.15 0.25 0.05 0.05 3.18 3.16 0.25 0.07 0.06 3.18 3.25 0.25 -0.07 -0.07
5 3.36 2.88 0.25 0.07 -0.26 3.32 2.98 0.24 -0.10 -0.28 3.30 3.25 0.24 0.04 0.03 3.30 3.25 0.24 0.07 0.07 3.32 3.35 0.23 -0.03 -0.03
6 3.46 2.97 0.23 0.11 -0.26 3.40 3.08 0.24 -0.06 -0.22 3.41 3.34 0.23 0.07 0.06 3.41 3.34 0.23 0.08 0.07 3.41 3.44 0.23 -0.02 -0.02
7 3.53 3.04 0.23 0.10 -0.26 3.51 3.17 0.23 -0.10 -0.26 3.53 3.45 0.22 0.03 0.02 3.53 3.44 0.22 0.08 0.07 3.53 3.54 0.21 0.03 0.03
8 3.59 3.12 0.23 0.11 -0.22 3.63 3.27 0.22 -0.09 -0.30 3.67 3.58 0.21 0.02 0.00 3.67 3.58 0.20 0.06 0.05 3.67 3.63 0.21 0.03 0.03
9 3.68 3.21 0.21 0.10 -0.26 3.75 3.37 0.21 -0.08 -0.32 3.82 3.75 0.19 -0.06 -0.07 3.82 3.75 0.19 -0.01 -0.02 3.79 3.74 0.21 0.08 0.08

10 3.79 3.39 0.20 0.07 -0.22 3.88 3.57 0.19 -0.10 -0.27 3.99 4.14 0.19 -0.17 -0.21 3.99 4.13 0.20 -0.13 -0.16 3.95 3.90 0.20 0.13 0.13
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Table 5: Out-of-sample measures of prediction performance (continued)
This table shows goodness-of-fit summary statistics of the machine learning models. The dependent variable is the logarithm of SAS value, and predictors are
macrovariables and stock characteristics summarized in Table 4. We consider using each benchmark index separately. The following summary statistics are
displayed: Quantile (decile, quintile, tercile) portfolio number, coefficient of variation of the dependent variable (CV), modified out-of-sample r-squared (R2

OOSM
)

defined in equation (5), traditional out-of-sample r-squared (R2
OOST

) defined in equation (4). Quantile portfolios are formed by sorting stocks based on the predicted
variable. The initial training period is from October 2007 to December 2017. The training is updated recursively every quarter by expanding the training period,
and the testing period is a quarter ahead in the future. All the statistics are computed over the out-of-sample prediction period from January 2018 to Dec. 2023.

Random Forest Gradient Boosting OLS Elastic Net Deep Neural Network

DepVar PredVar CV R2
OOSM

R2
OOST

DepVar PredVar CV R2
OOSM

R2
OOST

DepVar PredVar CV R2
OOSM

R2
OOST

DepVar PredVar CV R2
OOSM

R2
OOST

DepVar PredVar CV R2
OOSM

R2
OOST

Panel II : S&P400 benchmark index

II.B. Quintile portfolios

1 2.84 2.39 0.30 -0.02 -0.29 2.84 2.45 0.30 -0.15 -0.35 2.76 2.88 0.30 -0.01 -0.03 2.76 2.88 0.30 0.01 -0.01 2.77 2.71 0.30 -0.13 -0.13
2 3.18 2.73 0.26 0.04 -0.25 3.14 2.82 0.26 -0.08 -0.24 3.11 3.11 0.26 0.04 0.04 3.11 3.11 0.26 0.07 0.07 3.13 3.17 0.26 -0.08 -0.08
3 3.41 2.93 0.24 0.09 -0.25 3.36 3.03 0.24 -0.08 -0.25 3.35 3.29 0.23 0.06 0.05 3.36 3.29 0.23 0.08 0.07 3.36 3.40 0.23 -0.02 -0.02
4 3.56 3.08 0.23 0.10 -0.24 3.57 3.22 0.23 -0.08 -0.27 3.60 3.51 0.21 0.03 0.02 3.60 3.51 0.21 0.08 0.06 3.60 3.58 0.21 0.04 0.04
5 3.74 3.30 0.21 0.09 -0.24 3.82 3.47 0.20 -0.09 -0.29 3.90 3.94 0.19 -0.12 -0.13 3.90 3.94 0.20 -0.08 -0.08 3.87 3.82 0.20 0.11 0.11

II.C. Tercile portfolios

1 2.96 2.51 0.29 0.03 -0.24 2.95 2.58 0.29 -0.09 -0.27 2.89 2.96 0.29 0.03 0.02 2.88 2.96 0.29 0.06 0.05 2.90 2.87 0.29 -0.08 -0.08
2 3.40 2.92 0.24 0.10 -0.23 3.35 3.03 0.24 -0.08 -0.24 3.35 3.29 0.24 0.07 0.06 3.35 3.29 0.23 0.09 0.08 3.36 3.39 0.23 0.00 -0.00
3 3.68 3.22 0.22 0.10 -0.23 3.73 3.38 0.21 -0.07 -0.27 3.80 3.79 0.20 -0.04 -0.04 3.79 3.78 0.20 0.00 0.00 3.78 3.74 0.21 0.10 0.10

All 3.34 2.88 0.26 0.18 -0.10 3.34 3.00 0.26 0.06 -0.10 3.34 3.34 0.26 0.19 0.19 3.34 3.34 0.26 0.22 0.22 3.34 3.33 0.26 0.17 0.17
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Table 6: Investment Performance of Machine Learning Algorithms - with quarterly rebalancing.
This table shows the performance of the machine learning based SAS investment strategy. The Strategy consists of predicting stock future SAS value based on its
characteristics at time t, then sorting the stocks into quantile portfolios, and taking a long position in top quantile portfolios composed of stocks with the highest
predicted SAS values. The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural
network (DNN). We also use analyst recommendation consensus (AR) to form the portfolio in a similar fashion to the SAS strategy, and the results are presented
in the AR columns. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real value of stocks SAS values as computed from
observed data. The formed portfolio is held for three months, it is rebalanced in the beginning of the next quarter, and the investment runs from January 2018 to
December 2023.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA Index

Panel I: S&P500 benchmark index

Mean 1.315 1.345 1.344 1.357 1.390 1.414 1.420 1.366 1.390 1.359 1.369 1.394 1.354 1.396 1.335 1.400 1.376 1.381 1.368 1.343 1.371 1.089
Std. Dev. 5.175 5.003 4.949 4.953 5.015 5.884 5.698 5.126 5.107 5.114 5.132 5.099 5.770 5.789 5.306 5.221 5.224 5.230 5.235 5.770 5.718 5.213
Sharpe Ratio 0.225 0.239 0.241 0.244 0.248 0.215 0.223 0.237 0.243 0.237 0.238 0.244 0.209 0.215 0.223 0.239 0.235 0.236 0.233 0.207 0.214 0.180
Skew -0.091 -0.223 -0.181 -0.190 -0.177 -0.062 -0.061 -0.039 -0.116 -0.113 -0.113 -0.085 -0.272 -0.171 -0.068 -0.106 -0.112 -0.110 -0.116 -0.166 -0.199 -0.370
Kurtosis -0.289 -0.092 -0.185 -0.192 -0.288 0.650 -0.204 -0.176 -0.191 -0.136 -0.169 -0.158 0.817 -0.094 -0.101 -0.117 -0.103 -0.093 -0.095 0.481 0.048 -0.206
Adjusted Sharpe Ratio 0.225 0.237 0.240 0.242 0.246 0.214 0.223 0.237 0.242 0.236 0.237 0.243 0.206 0.214 0.223 0.238 0.234 0.235 0.232 0.205 0.212 0.178
Alpha 0.222 0.312 0.277 0.291 0.348 0.309 0.438 0.296 0.332 0.291 0.298 0.346 0.280 0.398 0.263 0.351 0.322 0.324 0.322 0.241 0.368 0.004
s.e.(alpha) 0.098 0.069 0.081 0.082 0.072 0.145 0.124 0.089 0.079 0.083 0.085 0.090 0.121 0.108 0.103 0.095 0.086 0.088 0.084 0.110 0.116 0.028

Panel II: S&P400 benchmark index

Mean 1.605 1.552 1.807 1.768 1.739 1.279 1.967 1.644 1.666 1.766 1.745 1.700 1.402 1.819 1.626 1.652 1.695 1.700 1.674 1.442 1.641 0.906
Std.Dev. 6.377 6.022 6.310 6.311 6.120 6.629 6.023 6.471 6.292 6.399 6.398 6.280 6.748 6.118 6.397 6.413 6.481 6.499 6.402 6.825 6.089 6.838
Sharpe Ratio 0.228 0.233 0.262 0.256 0.260 0.170 0.302 0.231 0.241 0.253 0.249 0.247 0.186 0.273 0.231 0.234 0.238 0.238 0.238 0.189 0.245 0.111
Skew -0.217 -0.173 -0.063 -0.048 -0.025 -0.302 -0.112 -0.179 -0.135 -0.075 -0.065 -0.021 -0.196 -0.126 -0.108 -0.103 0.012 0.043 -0.065 -0.136 -0.225 -0.515
Kurtosis 0.183 -0.341 -0.318 -0.292 -0.214 0.080 -0.360 -0.062 -0.251 -0.319 -0.331 -0.276 0.032 -0.319 0.045 -0.112 0.114 0.149 0.079 0.229 -0.234 1.377
Adjusted Sharpe Ratio 0.226 0.231 0.262 0.256 0.260 0.169 0.300 0.229 0.240 0.252 0.249 0.247 0.184 0.271 0.230 0.233 0.238 0.239 0.237 0.188 0.243 0.110
Alpha 0.471 0.551 0.709 0.683 0.684 0.178 0.887 0.511 0.600 0.663 0.642 0.616 0.335 0.731 0.522 0.595 0.590 0.588 0.578 0.345 0.584 -0.060
s.e.(alpha) 0.180 0.194 0.208 0.216 0.198 0.251 0.214 0.187 0.211 0.211 0.203 0.198 0.206 0.183 0.134 0.187 0.181 0.186 0.182 0.141 0.152 0.131
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Table 7: Additional Investment Performance Measures of Machine Learning Algorithms - with quarterly rebalancing.
This table shows additional performance measures of the machine learning based investment strategy to account for downside risks. The Strategy consists of
predicting stock future SAS value based on its characteristics at time t, then sorting the stocks into quantile portfolios, and investing in top quantile portfolios
composed of stocks with the highest predicted SAS values. The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS),
elastic net (ENET), deep neural network (DNN). We also use analyst recommendation consensus (AR) to form the portfolio in a similar fashion to the SAS strategy,
and the results are presented in the AR columns. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real value of stocks SAS
values as computed from observed data. The formed portfolio is held for three months, it is rebalanced in the beginning of the next quarter, and the investment runs
from January 2018 to December 2023.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA Index

Panel I: S&P500 benchmark index

Sortino 0.373 0.391 0.396 0.400 0.411 0.351 0.377 0.402 0.409 0.393 0.396 0.411 0.330 0.354 0.374 0.403 0.393 0.394 0.389 0.332 0.349 0.275
Info Ratio 0.240 0.393 0.328 0.343 0.411 0.235 0.273 0.316 0.393 0.342 0.344 0.375 0.257 0.306 0.288 0.396 0.373 0.384 0.376 0.242 0.309 0.016
Drawdown 0.232 0.214 0.238 0.238 0.222 0.218 0.224 0.200 0.186 0.207 0.206 0.199 0.260 0.227 0.202 0.191 0.195 0.197 0.201 0.243 0.234 0.243
VaR 0.095 0.095 0.089 0.089 0.091 0.117 0.107 0.089 0.095 0.092 0.091 0.091 0.120 0.115 0.099 0.098 0.099 0.099 0.098 0.116 0.115 0.103
Turnover 0.474 0.437 0.433 0.433 0.435 0.481 0.489 0.422 0.412 0.407 0.406 0.402 0.430 0.456 0.377 0.368 0.365 0.364 0.362 0.370 0.387 0.462

Panel II: S&P400 benchmark index

Sortino 0.373 0.390 0.460 0.448 0.457 0.264 0.538 0.384 0.409 0.439 0.434 0.432 0.295 0.474 0.387 0.396 0.412 0.414 0.406 0.303 0.408 0.161
Info Ratio 0.263 0.282 0.362 0.356 0.375 0.089 0.405 0.314 0.339 0.369 0.362 0.360 0.207 0.396 0.375 0.371 0.387 0.382 0.383 0.258 0.382 -0.054
Drawdown 0.245 0.207 0.204 0.215 0.185 0.273 0.230 0.241 0.208 0.206 0.205 0.198 0.271 0.222 0.250 0.244 0.233 0.230 0.242 0.277 0.230 0.354
VaR 0.130 0.119 0.120 0.119 0.115 0.148 0.105 0.126 0.124 0.128 0.127 0.125 0.148 0.114 0.123 0.125 0.125 0.125 0.127 0.142 0.119 0.153
Turnover 0.625 0.619 0.581 0.582 0.581 0.539 0.564 0.553 0.554 0.523 0.524 0.527 0.478 0.509 0.479 0.473 0.446 0.446 0.449 0.423 0.431 0.382
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Table 8: Linear Panel Regression Models of SAS values due to Carbon Emissions Level and Intensity
This table shows the regressions of logarithm of SAS measure (the dependent variable) on logarithm of carbon emission intensity (Panel A) or on logarithm of
carbon emission level (Panel B). Carbon emission intensity is computed as the ratio of CO2 emission (scope 1 & 2) to stock market capitalization. The panel data
runs from 2016 to 2023. Standard errors are clustered at stock level. FE stands for fixed effects. ∗, ∗∗, and ∗∗∗ denote respectively a p-value lower than 0.1, 0.05,
and 0.01.

Panel A: Carbon Intensity is the main explanatory variable

S&P400 S&P500
(1) (2) (3) (1) (2) (3)

Emission Intensity −0.029∗∗∗ −0.110∗∗∗ −0.113∗∗∗ −0.052∗∗∗ −0.116∗∗∗ −0.142∗∗∗

(0.005) (0.014) (0.015) (0.005) (0.020) (0.023)

Constant 3.926∗∗∗ 4.688∗∗∗ 4.590∗∗∗ 5.207∗∗∗ 6.828∗∗∗ 7.856∗∗∗

(0.076) (0.239) (0.262) (0.076) (0.433) (0.555)

Stock FE NO YES YES NO YES YES
Time FE NO NO YES NO NO YES

Observations 1,798 1,798 1,798 2,182 2,182 2,182
R2 0.017 0.803 0.813 0.049 0.896 0.904
Adjusted R2 0.016 0.714 0.727 0.048 0.866 0.875
Residual Std. Error 0.559 (df = 1796) 0.301 (df = 1235) 0.294 (df = 1228) 0.662 (df = 2180) 0.248 (df = 1691) 0.240 (df = 1682)
F Statistic 30.631∗∗∗ (df = 1; 1796) 8.983∗∗∗ (df = 562; 1235) 9.403∗∗∗ (df = 569; 1228) 229.461∗∗∗ (df = 1; 2550) 13.112∗∗∗ (df = 740; 1811) 13.673∗∗∗ (df = 747; 1804)

Panel B: Carbon Emission is the main explanatory variable

S&P400 S&P500
(1) (2) (3) (1) (2) (3)

Emission Level 0.002 0.004 −0.003 0.015∗∗∗ 0.055∗∗∗ 0.047∗∗∗

(0.005) (0.014) (0.013) (0.005) (0.016) (0.016)

Constant 3.450∗∗∗ 3.026∗∗∗ 3.020∗∗∗ 4.028∗∗∗ 2.601∗∗∗ 3.204∗∗∗

(0.123) (0.340) (0.337) (0.118) (0.505) (0.514)

Stock FE NO YES YES NO YES YES
Time FE NO NO YES NO NO YES

Observations 1,798 1,798 1,798 2,182 2,182 2,182
R2 0.0001 0.791 0.801 0.004 0.892 0.897
Adjusted R2 −0.0005 0.696 0.708 0.004 0.861 0.866
Residual Std. Error 0.563 (df = 1796) 0.311 (df = 1235) 0.304 (df = 1228) 0.677 (df = 2180) 0.253 (df = 1691) 0.248 (df = 1682)
F Statistic 0.130 (df = 1; 1796) 8.310∗∗∗ (df = 562; 1235) 8.664∗∗∗ (df = 569; 1228) 111.976∗∗∗ (df = 1; 2180) 29.834∗∗∗ (df = 490; 1691) 31.602∗∗∗ (df = 499; 1682)
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I. Number of stocks from benchmark held by Mutual funds

I.A. S&P500 I.B. S&P400
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II. Cumulative weights in percentage of stocks appearing in mutual fund holdings from the benchmark

II.A. S&P500 II.B. S&P400
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III. Number of mutual funds disclosing their holdings

III.A. S&P500 III.B. S&P400
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Figure 1: Stocks’ holding and mutual funds portfolios’ disclosures through time.
This figure presents the time series of number of stocks from the benchmark disclosed by at least on mutual fund (I),
the cumulative percentage weight of disclosed stocks in the benchmark portfolio (II), and the number of mutual funds
disclosing their portfolios with at least one stock from the benchmark (III).
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I. Cumulative Returns
I.A. S&P500 I.B. S&P400
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II. Cumulative Alphas
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Figure 2: Out-of-sample (Top portfolios) SAS Strategy Cumulative Returns and Cumulative Alphas - with quarterly rebalancing.
This figure presents the evolution of cumulative returns (I.) and cumulative alphas (II.) of machine learning-based SAS portfolios for different benchmark indices
(SP400 and S&P500). We form the machine learning-based SAS portfolios using five different prediction models: OLS, elastic net, random forest, gradient boosting,
and deep neural networks. The portfolios are formed every quarter by selecting the top 10 percent of stocks with the highest predicted SAS values. Selected stocks
are weighted based on their predicted SAS values in the portfolio. The out-of-sample prediction period goes from January 2018 to December 2023.
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Figure 3: Correlation Matrices between predicted SAS measures and Analyst Recommendation Consensus - quarterly rebalancing.
This figure presents the correlations between the machine learning-predicted SAS measures, SAS-Oracle measures, and analyst recommendation consensus for two
different benchmark indices (SP500 and S&P400). The latter aggregates analyst recommendations for Strong Buy (value between 1&1.49), Buy (value between
1.5&2.49), Hold (value between 2.5&3.49), Underperform (value between 3.5&4.49), and Sell (value between 4.5&5). The SAS-Oracle measures (ORACLE) are
the real value of stocks SAS values as computed from observed data. The prediction of the SAS measure uses different machine learning algorithms: random forest
(RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), and deep neural network (DNN). Every quarter, we expand the training sample, and
the prediction period spans from January 2018 to December 2023. We have tested all the correlations and found that they are statistically different from zero.
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I. Random Forest
I.A. S&P400 I.B. S&P500
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II. Elastic Net
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III. Deep Neural Network
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Figure 4: Feature Importance in the MLSAS strategy with quarterly rebalancing.
This figure presents aggregate feature importance computed by aggregating the thirty most important features across
all entities in the test sample. Roughly the one-third most important variables for making the prediction. Results are
displayed for each benchmark index (SP400 and S&P500) and various machine learning models: random forest (I.),
elastic net (II.), and deep neural network (III.). Refer to Table 4 for variables definition. sum tilt by stock is the
lagged dependent variable.
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EXTERNAL APPENDIX of “Learning from the Wisdom of
Mutual Fund Managers”

This supplemental appendix for “Learning from the Wisdom of Mutual Fund Managers” pro-

vides additional tables and figures that complement the analysis presented in the main text either

with more detailed information about the data used in the main analysis, or by using alternative

datasets for robustness checks.
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List of Additional Tables

A1 Performance of the SAS-Oracle strategy - with monthly rebalancing. This table

shows the performance of the SAS-Oracle strategy implemented by using the real value of stocks

SAS values as computed from observed data. The strategy consists of using computed the market-

wide absolute deviation from the benchmark for each stock based on its characteristics at time t as

if it was known, then sorting the stocks into quantile portfolios based on their computed SAS, and

computing the return of the formed portfolios for the next period t+1. Oracle portfolios are formed

using ex-ante the observed (ex-post) measure of stocks’ SAS computed using mutual fund holdings

when released to sort stocks into quantile portfolios and to equally weight them. The evaluation

period goes from October 2007 to December 2023. . . . . . . . . . . . . . . . . . . . . . . 13

A2 Investment Performance of Machine Learning Algorithms - with monthly

rebalancing. This table shows the performance of the machine learning based SAS investment

strategy. The Strategy consists of predicting stock future SAS value based on its characteristics at

time t, then sorting the stocks into quantile portfolios, and taking a long position in top quantile

portfolios composed of stocks with the highest predicted SAS values. The prediction methods are

random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep

neural network (DNN). We also use analyst recommendation consensus (AR) to form the portfolio

in a similar fashion to the SAS strategy, and the result are presented in the AR columns. ORA

columns show the statistics for the SAS-Oracle strategy implemented by using the real value of

stocks SAS values as computed from observed data. The formed portfolio is rebalanced in the

beginning of each month, and the investment runs from January 2018 to December 2023. The

SAS variable used in the machine learning model is the continuous variable of stock market-wide

absolute deviation from benchmark that we computed using the mutual funds’ holdings of stock. . 14
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A3 Additional Investment Performance Measures of Machine Learning Algo-

rithms - with monthly rebalancing. This table shows the performance of the machine

learning based investment strategy. The Strategy consists of predicting stock future SAS value

based on its characteristics at time t, then sorting the stocks into quantile portfolios, and investing in

top quantile portfolios composed of stocks with the highest predicted SAS values. The prediction

methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net

(ENET), deep neural network (DNN). We also use analyst recommendation consensus (AR) to

form the portfolio in a similar fashion to the SAS strategy, and the results are presented in the AR

columns. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the

real value of stocks SAS values as computed from observed data. The formed portfolio is held

for one month, it is rebalanced in the beginning of the next month, and the investment runs from

January 2018 to December 2023. The SAS variable used in the machine learning model is the

continuous variable of stock market-wide absolute deviation from benchmark that we computed

using the mutual funds’ holdings of stock. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A4 Test of difference in Performance between investment strategies based on SAS

and Analysts recommendations - with quarterly rebalancing. This table compares

the performance of the SAS-based (oracle and machine learning predictions) investment strategies to

the one based on analyst recommendations. The prediction methods are random forest (RF), gradient

boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural network (DNN). We

compute and test the difference in mean return, Sharpe ratio, and alpha (using the Fama-French 5

factor model + Momentum) between investment strategies based on the previously cited methods

and on analyst recommendation consensus. ORA columns show the statistics for the SAS-Oracle

strategy implemented by using the real value of stocks SAS values as computed from observed data.

ORA1, ORA2, and ORA3 are respectively for the SAS-Oracle strategies implemented by using the

real value of stocks SAS lagged by one, two, and three months respectively. The formed portfolio

is held for one quarter, it is rebalanced in the beginning of the next quarter, and the investment runs

from January 2018 to December 2023. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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List of Additional Figures

B1 Historical Cumulative Returns and Cumulative Alphas of the SAS-Oracle

Strategy - with quarterly rebalancing. This figure presents the evolution of cumulative

returns (I.) and cumulative alphas (II.) of SAS-Oracle portfolios for different benchmark indices

(SP500 and S&P400). We form the SAS-Oracle portfolios every quarter by sorting stocks into

decile portfolios based on their previous month measure of absolute deviation from benchmark

(SAS). Selected stocks are weighted based on their SAS values in the portfolio. The evaluation

period goes from October 2007 to December 2023. . . . . . . . . . . . . . . . . . . . . . 18

B2 Stocks in the SAS portfolio by Benchmark index. This figure presents a word cloud

of the long-only SAS-Oracle strategy that consists of taking a long position in the 5% stocks with

the highest SAS values for the S&P500 and S&P400 indices over the investment period. Oracle

investors behave as if mutual fund holding information were known in real time. The evaluation

period goes from October 2007 to December 2023. . . . . . . . . . . . . . . . . . . . . . 19

B3 Historical Cumulative Returns and Cumulative Alphas of the SAS-Oracle

Strategy - with monthly rebalancing. This figure presents the evolution of cumulative

returns (I.) and cumulative alphas (II.) of SAS-Oracle portfolios for different benchmark indices

(S&P400 and S&P500). We form the SAS-Oracle portfolios every month by sorting stocks into

decile portfolios based on their previous month measure of absolute deviation from benchmark

(SAS). Selected stocks are weighted based on their SAS values in the portfolio. The evaluation

period goes from October 2007 to December 2023. . . . . . . . . . . . . . . . . . . . . . 20
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B4 Correlation Matrices between predicted SAS measures and Analyst Recom-

mendation Consensus - monthly rebalancing. This figure presents the correlations

between the machine learning-predicted SAS measures, SAS-Oracle measures, and analyst rec-

ommendation consensus for two different benchmark indices (S&P500, and S&P400). The latter

aggregates analyst recommendations for Strong Buy (value between 1&1.49), Buy (value between

1.5&2.49), Hold (value between 2.5&3.49), Underperform (value between 3.5&4.49), and Sell

(value between 4.5&5). The SAS-Oracle measures (ORACLE) are the real value of stocks SAS

values as computed from observed data. The prediction of the SAS measure uses different machine

learning algorithms: random forest (RF), gradient boosting (GB), ordinary least squares (OLS),

elastic net (ENET), and deep neural network (DNN). Every month, we expand the training sample,

and the prediction period spans from January 2018 to December 2023. We have tested all the

correlations and found that they are statistically different from zero. . . . . . . . . . . . . . . 21

B5 Out-of-sample (Top portfolios) SAS Strategy Cumulative Returns and Cu-

mulative Alphas - with monthly rebalancing. This figure presents the evolution of

cumulative returns (I.) and cumulative alphas (II.) of machine learning-based SAS portfolios for

different benchmark indices (SP400 and S&P500). We form the machine learning-based SAS port-

folios using five different prediction models: OLS, elastic net, random forest, gradient boosting,

and deep neural networks. The portfolios are formed every month by selecting the top 10 percent

of stocks with the highest predicted SAS values. Selected stocks are weighted based on their pre-

dicted SAS values in the portfolio. The out-of-sample prediction period goes from January 2018 to

December 2023. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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A Machine Learning Methods

In this section,we present a brief summary of the machine learning methods that we apply to predict

stocks’ SAS measures and to select stocks to form our investment portfolio. We use supervised

machine learning methods, the history of mutual fund holdings, and stock characteristics to learn

the decision rule of mutual fund managers. This means a function that mimics manager skills to

transform complex information about investor preferences, stock characteristics, and interactions

with macroeconomic conditions into a decision about whether or not to include the stock in the

mutual fund’s portfolio. We aim to build a model that predicts future stocks’ SAS values based on

current stocks’ characteristics. This approach stems from the idea that mutual fund managers used

their skills to select these stocks based on publicly available information.

Our supervised learning objective can be addressed both as a regression problem for predicting

a stock SAS measure or as a classification problem for predicting a stock selection or not into the

SAS strategy’s portfolio. The baseline model in the first case can be the ordinary least squares

regression (OLS) model of the SAS measure on lagged stock characteristics, while in the second

case we could use a logit or probit model to predict the probability of a stock being selected or

not as an overperforming stock given its past characteristics. We try OLS as a benchmark model

and various machine learning models such as Elastic Net (ENET), Random Forest (RF), Gradient

Boosting (GB), and Deep Neural Network (DNN).

Formally, let us consider y the target outcome variable, which in our case can be a continuous

variable of stock SAS measure or a binary variable of stock selection into an SAS-Oracle portfolio.

We denote by x the vector of predictors (stock characteristics, business cycle or macro variables).

We assume that there is an unobservable function f , we want to learn about, used by skilled

managers in order to pick stocks based on their characteristics; that means:

y = f(x) (A.1)

OLS model assumes that f is a linear function of characteristics, and estimates the model’s

6



parameters, denoted θ, by minimizing the mean squared errors:

θ∗ =argmin
θ

T∑
t=1

Bt∑
i=1

(
yi,t − x

′

i,tθ
)2

(A.2)

where yi,t is the logarithm of stock i measure of absolute deviation from benchmark at time t, xi,t is

the vector of predictors, and Bt is the number of stock in the benchmark index at time t. Given the

observed values at time t in the test sample of predictors used to train the model, and the estimated

parameters in the train sample, the outcome variable is predicted (out-of-sample) as x
′
i,tθ

∗. The

predicted values are then sorted to form the investment portfolios.

A.1 Elastic Net

Although the OLS model is simple to build and understand, it has a notable drawback that is

resolved by the elastic net model. Undoubtely, the OLS model is susceptible to data overfitting due

to its attempt to incorporate every single predictor. This results, especially with large number of

predictors, in a model that exhibits strong performance when evaluated with the data it was trained

on, but performs poorly when tested on new, unseen data. The elastic net method incorporates

regularization parameters to effectively reduce the values of estimated parameters and prioritize

predictors that significantly contribute to minimizing mean squared errors. The elatic net model

parameters are obtained as follows:

θ∗ =argmin
θ

T∑
t=1

Bt∑
i=1

(
yi,t − x

′

i,tθ
)2

+ λ
(
α∥θ∥1 + (1− α)∥θ∥22

)
(A.3)

Where λ > 0 and α ∈ [0, 1] are hyper-parameters set optimally by cross-validation. ∥.∥1 and

∥.∥2 denote the L1-norm and L2-norm respectively. The elastic net objective function ecompasses

the least absolute sum of squares operator (LASSO) regression (when α = 1) and the ridge

regression (when α = 0) as special cases.
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A.2 Random Forest

OLS and Elastic net both assume a linear function of the predictors to fit the managers conviction

about a stock value, but they do not account for possible non-linearities or interactions between

predictors. Decision trees model incorporates multiway predictor interactions. It assume that the

functional form is as follows:

f(x) =
M∑

m=1

cm.1(x∈Rm), (A.4)

where 1(.) is the indicator function, and R1, ..., RM represent a partition of feature space into M

regions based on predictors and split points. M is an hyper-parameter set by cross-validation. The

parameter cm, for m = 1, ...,M , is simply estimated as the average of previous realizations yt such

that xt belongs to Rm as follows:

ĉm =argmin
cm

T∑
t=1

1 (xt ∈ Rm) (yt − cm)
2 =

∑T
t=1 1 (xt ∈ Rm) yt∑T
t=1 1 (xt ∈ Rm)

(A.5)

Decision trees suffer from high variance of the predicted output. Random forest resolved this

problem by bootstrapping the original data and averaging predictions across decorrelated decision

trees. The decorrelation of decision trees is achieved by using only a random subset of predictors for

building the trees each time a split in a tree is considered. This is done for the purpose of generating

variability across the boostrap decision trees, thereby making the average of the resulting trees less

variable and hence more reliable.

A.3 Gradient Boosting

Similarly to random forests, gradient boosting is based on decision trees. But instead of aggregating

the predictions of independent decision trees across bootstrap samples as done by random forest,

gradient boosting uses only the original data. It may start with a random guessing prediction

function and then sequentially update the prediction function by adding in a shrunken version of

8



the new decision tree to further reduce the pre-existing prediction error. That means we fit a tree

using the current residuals rather than the initial outcome variable as the response. As a result,

the gradient-boosting method starts with weak decision trees and converges to strong trees by

sequentially learning (from the previous tree) how to better fit the data by giving more weight to

those observations that are poorly predicted by the current aggregation of trees.

This learning process can result in data overfitting, particularly when the number of sequences

is enormous. To address this, cross validation is employed to determine the optimal number of

sequence iterations. The iterative enhancement of the prediction function and its sequential update

in the boosting decision tree mirror the sequential processing of data in the deep neural network to

minimize prediction errors.

A.4 Neural Network Model

A neural network model (NNM) is a combination of layers of nodes where each node linearly

combines information in predictor variables into an input supply to an activation function whose

outputs are linearly combined to match the observed target variable as closely as possible according

to a pre-specified distance.

A deep neural network with L hidden layers is an approximation to f(x) of the form:

y ∼= g (x; θ) = ϕ(L)

θ
(L)
0 +

ML∑
m=1

θ(L)m z(L)m

 (A.6)

where ϕ(L) (.) is an activation function23 in the output layer, ML is the number of neurons in

the L (last) hidden layer, and θL ∈ RML+1 is the sub-vector of network weights at layer L. For

l ∈ {1, ..., L} and m ∈ {1, ...,M(l+1)}, z(l)m is the input information at layer l coming from the
23Examples of activation functions include the following: The identity function (ϕ(z) = z), the sigmoidal function

often seen in logit model (ϕ(z) = 1
1+e−z ), step function, the rectified linear unit (ReLU, ϕ(z) = max(0, z) ), the

softplus function (ϕ(z) = log(1 + ez)), etc.
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previous layer and defined as follows:

z(l+1)
m =

 ϕ(l)
(
θ
(l)
0 +

∑Ml

n=1 θ
(l)
n,mz

(l)
n

)
if l ∈ {2, ..., L}

ϕ(l)
(
θ
(l)
0 +

∑N
n=1 θ

(l)
n,mxn

)
if l = 1

(A.7)

Ml is the width of the network or number of neurons in the layer l. θl ∈ RMl×(Ml−1+1) is the vector

of parameters in layer l; in total there are 1 +
∏L

l=1(Ml + 1) parameters to estimate, and they are

chosen in order to minimize a loss (error) function when training the model as follows:

θ∗ =argmin
θ

D
(
y, g(x; θ)

)
(A.8)

Where D denotes a distance, such as the L2-norm or a divergence metric24 between the distribution

of the observed data and the one predicts by the model. The initialization of the parameter θ for

the optimization is made randomly and depends on the random number seed used in the algorithm.

Thus, depending on the chosen seed, the model’s estimated parameters and prediction may change.

Therefore, following Gu et al. (2020), we use an ensemble method in training and evaluating the

performance of our neural network. In particular, we use multiple random seeds to initialize neural

network estimation and construct predictions by averaging predictions from all networks.

B The MLSAS Investment Strategy with Monthly Rebalancing

Table A2 presents summary statistics on the financial performance of the MLSAS investment

strategy but with portfolio rebalancing at every month. The table displays three blocks (Top

10, Top 5, and Top 3) of five columns (RF, GB, OLS, ENET, and DNN) for different machine

learning models. Each block corresponds to a quantile (decile, quintile or tercile) portfolio used for

the MLSAS investment strategy. For comparison, columns AR and ORA, respectively, provide

summary statistics of the performance of similar strategies based on the analysts recommendation

consensus (AR) and the observed SAS measures (ORA) over the same investment period. The
24Common divergence metrics include Kullback-Leibler divergence and binary cross entropy.
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statistics are also provided for the benchmark indices used by a passive investor. Overall, it confirms

the patterns previously highlighted, especially regarding the overperformance of the RF and DNN

compared to the benchmark indices. However, the performance of theMLSAS investment strategy

is less impressive than in the case of quarterly rebalancing, in particular when compared to the

SAS-Oracle strategy. Indeed, we observe a decrease in the monthly average return achieved by the

ML-based SAS strategies, an increase in their standard deviations, and a reduction in the Sharpe

ratios; whereas the opposite is observed for the SAS-Oracle strategy displaying a higher average

return, a lower standard deviation, and a higher Sharpe ratio than with quarterly rebalancing.

The results indicate that Mutual funds often and effectively adjust their portfolio holdings by

deviating from the benchmark indices. For an Oracle investor, having real-time access to their port-

folio holdings and utilizing that information more frequently (monthly) in the SAS investing strategy

allows for superior performance compared to using that information less frequently (quarterly). As

a machine learning investor, it is not very profitable to frequently update the portfolio based on

predicted information. This is because the new information added to the training sample, when

done too often, is insufficient for the machine learning model to correctly update its parameters and

accurately predict the future values of stocks SAS measures. Instead, the prediction happens to be

more erratic and leads to a lower performance compared to quarterly rebalancing. During quarterly

rebalancing, mutual fund managers generate sufficient fresh information that allows the machine

learning model to accurately adjust its parameters.

Furthermore, as previously, we observe a similar deterioration in the performance of the strate-

gies as we move from a concentrate (top decile) to a more diversified (top tercile) portfolio holding.

In the case of BigCap stocks, the benchmark index overperforms some MLSAS investment strate-

gies (RF and GB), in terms of Sharpe ratio for the quintile portfolios, and it beats all the ML-based

tercile portfolios. In addition, the alpha generated by the MLSAS strategy is not statistically

different than zero, which confirms our view that the formed portfolios’ returns are too noisy to

be on average positive once we account for the common pricing factors. Given that rebalancing

occurs more frequently, implementing this ML-strategy with monthly rebalancing would certainly

11



result in a negative net risk-adjusted return.

Table A3 similarly displays additional performance measures but for the monthly rebalancing

strategy. Overall, it corroborates our view that while MLSAS investment strategy with monthly

rebalancing overperforms the benchmark index, the achieved performance remains far below the

upper potential displayed by the SAS-Oracle strategy which leaves room for further improvements.

Figure B4 shows the correlations between analyst recommendation consensus and machine

learning-based predicted SAS measures for stocks in different benchmark indices over the period

from January 2018 to December 2023, when the machine learning training sample is updated

every month to predict the MLSAS value. We see a positive but low correlation between analyst

recommendation consensus and the various machine learning-based predicted SAS measures,

ranging from 0.1 to 0.3. OLS and Elastic Net predictions appear to be more correlated to analyst

recommendations than other non-linear machine learning predictions, and these correlations are

highest among BigCap stocks. We also observe that when the training sample updates more

frequently (monthly), the correlations between machine learning predicted SAS values and analyst

recommendation consensus are either higher or equal to those when the training sample updates

quarterly.

Similarly, the AR columns in Table A2 show the performance of the long-only investment

strategy based on analyst recommendations, but with portfolio rebalancing every month. The

results of the comparative performance between the AR strategy and the benchmark indices are

mitigated. For MidCap stocks, the AR strategy performs similarly to the benchmark index with

respect to various measures such as average return, standard deviation, and Sharpe ratio. Skewness

appears to be slightly worse for the benchmark portfolio than for the AR strategy. On the contrary,

the AR strategy for MidCap stocks has a higher kurtosis than the benchmark index. In both cases,

risk-adjusted returns are negative and not statistically different from zero. For BigCap stocks, the

AR strategy clearly underperforms compared to the benchmark index over the evaluation period.

The AR strategy’s average return and Sharpe ratio are lower than the benchmark index for all

portfolio quantiles, while its standard deviation is larger. Overall, the AR strategy with monthly

12



rebalancing will generates a negative risk adjusted return after transaction cost, and would definitely

not be profitable to an investor.

C Additional tables

Table A1: Performance of the SAS-Oracle strategy - with monthly rebalancing.
This table shows the performance of the SAS-Oracle strategy implemented by using the real value of stocks SAS values
as computed from observed data. The strategy consists of using computed the market-wide absolute deviation from the
benchmark for each stock based on its characteristics at time t as if it was known, then sorting the stocks into quantile
portfolios based on their computed SAS, and computing the return of the formed portfolios for the next period t + 1.
Oracle portfolios are formed using ex-ante the observed (ex-post) measure of stocks’ SAS computed using mutual fund
holdings when released to sort stocks into quantile portfolios and to equally weight them. The evaluation period goes
from October 2007 to December 2023.

Decile portfolio Quintile portfolio Tercile portfolio Benchmark

Statistics Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Index

Panel I: S&P500 benchmark portfolio

Mean -0.309 0.222 0.506 0.837 0.909 1.277 1.250 1.509 1.764 1.778 -0.016 0.676 1.097 1.381 1.772 0.222 1.119 1.644 0.864
Std. Dev. 7.503 6.318 5.914 5.566 5.211 5.225 5.092 4.916 4.651 4.224 6.730 5.642 5.155 4.929 4.354 6.246 5.129 4.525 4.662
Sharpe Ratio -0.051 0.023 0.073 0.137 0.160 0.230 0.230 0.291 0.363 0.403 -0.013 0.106 0.198 0.265 0.390 0.024 0.203 0.346 0.169
Skew -0.867 -0.295 0.012 -0.746 -0.495 -0.385 -0.312 -0.107 -0.277 -0.169 -0.569 -0.436 -0.441 -0.231 -0.239 -0.443 -0.446 -0.241 -0.554
Kurtosis 6.428 3.548 3.787 3.094 1.520 1.638 1.472 0.381 0.573 0.280 4.498 3.048 1.531 0.652 0.437 3.998 1.682 0.433 0.810
Adjusted Sharpe Ratio -0.051 0.023 0.073 0.134 0.158 0.226 0.227 0.289 0.356 0.398 -0.013 0.105 0.195 0.261 0.382 0.024 0.200 0.341 0.166
Alpha -1.350 -0.665 -0.450 -0.054 -0.018 0.358 0.382 0.600 0.911 0.963 -0.974 -0.246 0.174 0.492 0.940 -0.731 0.222 0.782 -0.018
s.e (alpha) 0.224 0.133 0.155 0.113 0.099 0.101 0.102 0.098 0.104 0.092 0.159 0.113 0.079 0.082 0.081 0.127 0.074 0.060 0.017

Panel II: S&P400 benchmark portfolio

Mean -0.052 0.372 0.387 0.725 0.711 1.110 1.180 1.481 1.951 2.869 0.194 0.561 0.915 1.334 2.432 0.322 0.929 2.059 0.864
Std. Dev. 8.094 7.357 6.542 6.192 6.462 5.981 5.909 5.629 5.539 5.325 7.550 6.237 6.108 5.679 5.319 6.969 5.967 5.386 5.886
Sharpe Ratio -0.016 0.040 0.048 0.105 0.098 0.173 0.187 0.249 0.338 0.524 0.016 0.078 0.137 0.221 0.443 0.036 0.143 0.368 0.134
Skew 0.282 -0.239 -0.220 -0.357 -0.033 -0.223 -0.444 -0.353 -0.188 -0.021 -0.054 -0.387 -0.178 -0.414 -0.091 -0.128 -0.254 -0.209 -0.567
Kurtosis 6.713 4.213 3.476 1.798 3.240 0.986 1.656 0.774 0.742 0.357 5.231 2.228 1.874 1.167 0.475 4.185 1.816 0.526 2.033
Adjusted Sharpe Ratio -0.016 0.040 0.048 0.104 0.098 0.172 0.184 0.245 0.334 0.521 0.016 0.077 0.137 0.217 0.438 0.035 0.142 0.362 0.132
Alpha -1.057 -0.652 -0.571 -0.225 -0.274 0.193 0.202 0.562 1.007 1.924 -0.824 -0.393 -0.035 0.385 1.489 -0.677 -0.022 1.120 -0.067
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Table A2: Investment Performance of Machine Learning Algorithms - with monthly rebalancing.
This table shows the performance of the machine learning based SAS investment strategy. The Strategy consists of predicting stock future SAS value based on its
characteristics at time t, then sorting the stocks into quantile portfolios, and taking a long position in top quantile portfolios composed of stocks with the highest
predicted SAS values. The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural
network (DNN). We also use analyst recommendation consensus (AR) to form the portfolio in a similar fashion to the SAS strategy, and the result are presented
in the AR columns. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real value of stocks SAS values as computed from
observed data. The formed portfolio is rebalanced in the beginning of each month, and the investment runs from January 2018 to December 2023. The SAS variable
used in the machine learning model is the continuous variable of stock market-wide absolute deviation from benchmark that we computed using the mutual funds’
holdings of stock.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA Index

Panel I: S&P500 benchmark portfolio

Mean 1.017 1.050 1.189 1.174 1.174 0.975 1.998 1.044 1.022 1.087 1.102 1.084 1.035 1.954 1.008 1.007 1.059 1.045 1.045 0.974 1.816 1.089
Std. Dev. 5.096 5.056 5.039 5.020 4.946 5.993 4.864 5.248 5.137 5.140 5.105 5.144 5.931 4.861 5.345 5.297 5.305 5.313 5.266 5.922 5.019 5.213
Sharpe Ratio 0.170 0.178 0.207 0.204 0.207 0.138 0.380 0.171 0.170 0.182 0.187 0.182 0.149 0.371 0.161 0.162 0.172 0.169 0.170 0.139 0.332 0.180
Skew -0.392 -0.299 -0.282 -0.284 -0.215 -0.206 -0.124 -0.240 -0.223 -0.205 -0.215 -0.164 -0.391 -0.210 -0.245 -0.228 -0.239 -0.240 -0.254 -0.329 -0.147 -0.370
Kurtosis 0.271 -0.178 -0.252 -0.235 -0.174 1.240 -0.364 0.233 -0.109 -0.028 -0.084 0.043 1.303 -0.210 0.181 0.059 0.077 0.065 0.172 0.992 -0.198 -0.206
Adjusted Sharpe Ratio 0.168 0.177 0.205 0.202 0.206 0.137 0.378 0.169 0.169 0.181 0.186 0.181 0.148 0.367 0.160 0.161 0.170 0.167 0.169 0.138 0.329 0.178
Alpha -0.008 0.027 0.123 0.110 0.151 -0.112 0.959 0.003 -0.018 0.004 0.023 0.031 -0.058 0.951 -0.032 -0.050 -0.015 -0.035 0.014 -0.130 0.793 0.004
s.e (alpha) 0.108 0.093 0.098 0.096 0.095 0.146 0.088 0.111 0.069 0.072 0.071 0.075 0.124 0.068 0.100 0.087 0.091 0.094 0.084 0.104 0.090 0.028

Panel II: S&P500 benchmark portfolio

Mean 1.222 1.245 1.159 1.145 1.161 0.723 2.735 1.126 1.005 1.178 1.163 1.134 0.857 2.361 1.117 1.044 1.176 1.168 1.114 0.825 2.009 0.906
Std. Dev. 6.570 6.574 6.350 6.330 6.462 6.739 5.868 6.476 6.443 6.556 6.528 6.490 6.794 5.871 6.557 6.548 6.597 6.618 6.539 6.941 6.044 6.838
Sharpe Ratio 0.163 0.167 0.159 0.157 0.157 0.085 0.440 0.151 0.133 0.157 0.155 0.152 0.104 0.376 0.147 0.137 0.156 0.154 0.147 0.097 0.307 0.111
Skew -0.151 -0.122 -0.082 -0.051 -0.089 -0.369 -0.169 -0.097 -0.147 -0.111 -0.126 -0.143 -0.341 -0.049 -0.289 -0.219 -0.143 -0.131 -0.184 -0.352 -0.156 -0.515
Kurtosis -0.230 -0.081 -0.115 -0.167 -0.221 0.468 -0.258 -0.158 -0.221 -0.196 -0.154 -0.169 0.405 -0.313 0.226 0.027 0.232 0.224 0.209 0.969 -0.210 1.377
Adjusted Sharpe Ratio 0.163 0.166 0.159 0.157 0.156 0.085 0.435 0.150 0.133 0.157 0.155 0.151 0.103 0.376 0.146 0.136 0.155 0.153 0.147 0.097 0.305 0.110
Alpha 0.072 0.145 0.138 0.086 0.151 -0.408 1.667 0.066 -0.072 0.103 0.092 0.070 -0.229 1.294 0.031 -0.066 0.067 0.056 0.013 -0.261 0.961 -0.060
s.e (alpha) 0.233 0.197 0.179 0.205 0.246 0.213 0.215 0.181 0.169 0.171 0.170 0.190 0.197 0.162 0.150 0.150 0.167 0.167 0.160 0.157 0.152 0.131
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Table A3: Additional Investment Performance Measures of Machine Learning Algorithms - with monthly rebalancing.
This table shows the performance of the machine learning based investment strategy. The Strategy consists of predicting stock future SAS value based on its
characteristics at time t, then sorting the stocks into quantile portfolios, and investing in top quantile portfolios composed of stocks with the highest predicted SAS
values. The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural network (DNN). We
also use analyst recommendation consensus (AR) to form the portfolio in a similar fashion to the SAS strategy, and the results are presented in the AR columns.
ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real value of stocks SAS values as computed from observed data. The
formed portfolio is held for one month, it is rebalanced in the beginning of the next month, and the investment runs from January 2018 to December 2023. The SAS
variable used in the machine learning model is the continuous variable of stock market-wide absolute deviation from benchmark that we computed using the mutual
funds’ holdings of stock.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA RF GB OLS ENET DNN AR ORA Index

Panel I: S&P500 benchmark portfolio

Sortino 0.259 0.275 0.326 0.321 0.331 0.210 0.716 0.266 0.265 0.287 0.295 0.287 0.225 0.682 0.248 0.251 0.267 0.262 0.264 0.209 0.599 0.275
Info.Ratio -0.009 0.031 0.138 0.129 0.162 -0.077 1.016 0.003 -0.023 0.005 0.029 0.034 -0.054 1.090 -0.037 -0.058 -0.018 -0.039 0.016 -0.137 0.873 0.016
Drawdown 0.252 0.260 0.271 0.271 0.243 0.258 0.154 0.222 0.226 0.245 0.242 0.223 0.289 0.162 0.225 0.223 0.227 0.229 0.223 0.276 0.171 0.243
VaR 0.104 0.098 0.099 0.099 0.096 0.128 0.079 0.104 0.102 0.102 0.100 0.103 0.129 0.087 0.108 0.107 0.106 0.107 0.108 0.130 0.090 0.103
Turnover 0.983 0.959 0.941 0.930 0.953 0.868 0.888 0.931 0.889 0.890 0.885 0.913 0.758 0.833 0.836 0.806 0.796 0.793 0.823 0.634 0.750 1.147

Panel II: S&P400 benchmark portfolio

Sortino 0.258 0.267 0.254 0.252 0.250 0.123 0.861 0.238 0.206 0.249 0.245 0.238 0.153 0.725 0.226 0.210 0.245 0.242 0.228 0.142 0.544 0.161
Info.Ratio 0.035 0.084 0.077 0.046 0.075 -0.233 0.728 0.039 -0.043 0.063 0.057 0.044 -0.159 0.753 0.022 -0.046 0.048 0.040 0.010 -0.214 0.657 -0.054
Drawdown 0.220 0.237 0.230 0.220 0.239 0.365 0.153 0.241 0.255 0.237 0.238 0.241 0.350 0.167 0.272 0.280 0.266 0.266 0.263 0.350 0.211 0.354
VaR 0.132 0.133 0.128 0.125 0.135 0.161 0.103 0.131 0.130 0.135 0.134 0.136 0.163 0.095 0.141 0.138 0.134 0.134 0.140 0.163 0.111 0.153
Turnover 1.626 1.532 1.475 1.466 1.523 1.209 1.404 1.410 1.348 1.298 1.299 1.348 1.090 1.255 1.177 1.129 1.087 1.086 1.120 0.918 1.055 1.385
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Table A4: Test of difference in Performance between investment strategies based on SAS and Analysts recommendations - with
quarterly rebalancing.
This table compares the performance of the SAS-based (oracle and machine learning predictions) investment strategies to the one based on analyst recommendations.
The prediction methods are random forest (RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), deep neural network (DNN). We compute
and test the difference in mean return, Sharpe ratio, and alpha (using the Fama-French 5 factor model + Momentum) between investment strategies based on the
previously cited methods and on analyst recommendation consensus. ORA columns show the statistics for the SAS-Oracle strategy implemented by using the real
value of stocks SAS values as computed from observed data. ORA1, ORA2, and ORA3 are respectively for the SAS-Oracle strategies implemented by using the
real value of stocks SAS lagged by one, two, and three months respectively. The formed portfolio is held for one quarter, it is rebalanced in the beginning of the next
quarter, and the investment runs from January 2018 to December 2023.

Top 10 Top 5 Top 3 Benchmark

Statistics RF GB OLS ENET DNN ORA ORA1 ORA2 ORA3 RF GB OLS ENET DNN ORA ORA1 ORA2 ORA3 RF GB OLS ENET DNN ORA ORA1 ORA2 ORA3 Benchmark

Panel I: S&P500 benchmark portfolio
Mean (diff) -0.038 -0.028 -0.028 -0.014 0.007 0.343 -0.051 -0.062 -0.019 0.050 0.071 0.041 0.049 0.076 0.311 -0.005 -0.042 -0.003 0.003 0.071 0.042 0.048 0.034 0.240 -0.068 -0.103 -0.055 -0.236
t-stat -0.172 -0.112 -0.117 -0.059 0.028 1.357 -0.207 -0.248 -0.083 0.297 0.428 0.246 0.291 0.451 1.625 -0.026 -0.222 -0.016 0.028 0.585 0.334 0.385 0.277 1.543 -0.453 -0.691 -0.385 -1.432
p-value 0.864 0.911 0.907 0.953 0.978 0.179 0.837 0.805 0.934 0.768 0.670 0.806 0.772 0.653 0.109 0.979 0.825 0.987 0.978 0.560 0.740 0.701 0.782 0.128 0.652 0.492 0.702 0.157

Sharpe ratio (diff) 0.025 0.035 0.038 0.041 0.041 0.116 0.039 0.040 0.042 0.039 0.044 0.038 0.038 0.045 0.104 0.037 0.034 0.040 0.020 0.038 0.031 0.032 0.030 0.079 0.016 0.016 0.022 -0.027
t-stat 0.747 0.964 1.030 1.088 1.119 3.004 1.123 1.095 1.162 1.205 1.507 1.268 1.289 1.454 3.373 1.305 1.186 1.452 1.109 1.895 1.679 1.711 1.581 3.928 0.859 0.829 1.163 -0.944
p-value 0.455 0.335 0.303 0.276 0.263 0.003 0.261 0.273 0.245 0.228 0.132 0.205 0.198 0.146 0.001 0.192 0.236 0.146 0.268 0.058 0.093 0.087 0.114 0.0001 0.390 0.407 0.245 0.345

Alpha (diff) -0.041 0.024 -0.006 0.008 0.045 0.389 -0.008 -0.039 0.008 0.047 0.080 0.042 0.046 0.095 0.377 0.027 -0.003 0.048 0.032 0.122 0.087 0.089 0.084 0.330 0.006 -0.024 0.018 -0.214
t-stat -0.279 0.147 -0.037 0.049 0.283 2.093 -0.044 -0.210 0.044 0.361 0.722 0.347 0.385 0.725 3.047 0.195 -0.024 0.383 0.347 1.489 0.964 0.976 1.018 3.303 0.062 -0.262 0.195 -1.807
p-value 0.781 0.883 0.971 0.961 0.778 0.040 0.965 0.835 0.965 0.719 0.473 0.730 0.701 0.471 0.003 0.846 0.981 0.703 0.729 0.142 0.339 0.333 0.313 0.002 0.951 0.794 0.846 0.076

Panel I: S&P400 benchmark portfolio
Mean (diff) 0.312 0.287 0.562 0.524 0.494 0.695 0.024 0.029 0.003 0.237 0.275 0.347 0.342 0.297 0.423 -0.050 0.011 0.005 0.185 0.197 0.250 0.253 0.231 0.197 -0.094 -0.155 -0.088 -0.501
t-stat 1.260 1.125 2.051 1.918 1.946 2.256 0.079 0.092 0.010 1.311 1.389 1.834 1.776 1.485 1.727 -0.206 0.047 0.024 1.379 1.311 1.906 1.868 1.727 0.948 -0.564 -0.858 -0.492 -2.464
p-value 0.212 0.265 0.044 0.059 0.056 0.027 0.938 0.927 0.992 0.194 0.169 0.071 0.080 0.142 0.089 0.838 0.962 0.981 0.172 0.194 0.061 0.066 0.089 0.347 0.574 0.394 0.624 0.016

Sharpe ratio (diff) 0.055 0.065 0.097 0.091 0.094 0.133 0.023 0.020 0.020 0.044 0.056 0.063 0.063 0.060 0.087 0.026 0.025 0.025 0.041 0.043 0.048 0.048 0.048 0.056 0.009 -0.001 0.012 -0.050
t-stat 1.385 1.666 2.132 1.965 2.287 2.871 0.514 0.422 0.460 1.470 1.911 2.134 2.087 1.972 2.565 0.897 0.764 0.775 1.975 2.210 2.367 2.243 2.488 2.333 0.474 -0.042 0.607 -1.024
p-value 0.166 0.096 0.033 0.049 0.022 0.004 0.607 0.673 0.645 0.142 0.056 0.033 0.037 0.049 0.010 0.370 0.445 0.438 0.048 0.027 0.018 0.025 0.013 0.020 0.636 0.967 0.544 0.306

Alpha (diff) 0.283 0.405 0.574 0.552 0.555 0.758 0.052 0.151 0.038 0.177 0.289 0.318 0.318 0.286 0.427 0.029 0.052 0.055 0.183 0.245 0.247 0.244 0.239 0.267 0.004 -0.049 0.0002 -0.369
t-stat 0.959 1.709 2.280 2.164 2.483 3.473 0.258 0.558 0.169 0.844 1.716 2.166 2.285 1.762 2.628 0.197 0.308 0.323 1.388 2.126 2.280 2.194 2.293 2.354 0.041 -0.411 0.002 -2.446
p-value 0.341 0.092 0.026 0.034 0.016 0.001 0.797 0.579 0.866 0.402 0.091 0.034 0.026 0.083 0.011 0.844 0.759 0.748 0.170 0.038 0.026 0.032 0.025 0.022 0.967 0.682 0.999 0.017
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Panel I. Cumulative Returns
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Panel II. Cumulative Alphas
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Figure B1: Historical Cumulative Returns and Cumulative Alphas of the SAS-Oracle Strategy - with quarterly rebalancing.
This figure presents the evolution of cumulative returns (I.) and cumulative alphas (II.) of SAS-Oracle portfolios for different benchmark indices (SP500 and
S&P400). We form the SAS-Oracle portfolios every quarter by sorting stocks into decile portfolios based on their previous month measure of absolute deviation
from benchmark (SAS). Selected stocks are weighted based on their SAS values in the portfolio. The evaluation period goes from October 2007 to December 2023.
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Figure B2: Stocks in the SAS portfolio by Benchmark index.
This figure presents a word cloud of the long-only SAS-Oracle strategy that consists of taking a long position in the 5% stocks with the highest SAS values for the
S&P500 and S&P400 indices over the investment period. Oracle investors behave as if mutual fund holding information were known in real time. The evaluation
period goes from October 2007 to December 2023.
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I. Cumulative Returns
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II. Cumulative Alphas
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Figure B3: Historical Cumulative Returns and Cumulative Alphas of the SAS-Oracle Strategy - with monthly rebalancing.
This figure presents the evolution of cumulative returns (I.) and cumulative alphas (II.) of SAS-Oracle portfolios for different benchmark indices (S&P400 and
S&P500). We form the SAS-Oracle portfolios every month by sorting stocks into decile portfolios based on their previous month measure of absolute deviation
from benchmark (SAS). Selected stocks are weighted based on their SAS values in the portfolio. The evaluation period goes from October 2007 to December 2023.
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Figure B4: Correlation Matrices between predicted SAS measures and Analyst Recommendation Consensus - monthly rebalanc-
ing.
This figure presents the correlations between the machine learning-predicted SAS measures, SAS-Oracle measures, and analyst recommendation consensus for two
different benchmark indices (S&P500, and S&P400). The latter aggregates analyst recommendations for Strong Buy (value between 1&1.49), Buy (value between
1.5&2.49), Hold (value between 2.5&3.49), Underperform (value between 3.5&4.49), and Sell (value between 4.5&5). The SAS-Oracle measures (ORACLE) are
the real value of stocks SAS values as computed from observed data. The prediction of the SAS measure uses different machine learning algorithms: random forest
(RF), gradient boosting (GB), ordinary least squares (OLS), elastic net (ENET), and deep neural network (DNN). Every month, we expand the training sample, and
the prediction period spans from January 2018 to December 2023. We have tested all the correlations and found that they are statistically different from zero.
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I. Cumulative Returns
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II. Cumulative Alphas
II.A. S&P500 II.B. S&P400
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Figure B5: Out-of-sample (Top portfolios) SAS Strategy Cumulative Returns and Cumulative Alphas - with monthly rebalancing.
This figure presents the evolution of cumulative returns (I.) and cumulative alphas (II.) of machine learning-based SAS portfolios for different benchmark indices
(SP400 and S&P500). We form the machine learning-based SAS portfolios using five different prediction models: OLS, elastic net, random forest, gradient boosting,
and deep neural networks. The portfolios are formed every month by selecting the top 10 percent of stocks with the highest predicted SAS values. Selected stocks
are weighted based on their predicted SAS values in the portfolio. The out-of-sample prediction period goes from January 2018 to December 2023.
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