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driven components, revealing that disappointment aversion increases risk avoidance

with horizon—reversing standard predictions. Ignoring downside asymmetries leads
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1 Introduction

Substantial evidence suggests that people are more motivated to avoid regret than to pursue

glory. Allais (1953) famously challenged the expected utility theory by highlighting its incon-

sistency with the observed behavior: People frequently purchase insurance to protect against

improbable losses while simultaneously buying lottery tickets to pursue improbable gains.

This paradox reflects a tendency to overestimate small probabilities, fearing rare but painful

outcomes, while also chasing outsized rewards. Such behavioral asymmetries have inspired

alternative preference models, including prospect theory (Kahneman and Tversky; 1979)

and disappointment aversion (DA) preferences (Gul; 1991), which were later generalized by

Routledge and Zin (2010).

Generalized disappointment aversion (GDA) preferences allow investors to evaluate out-

comes relative to an endogenous reference point, typically proportional to their certainty

equivalent, and to assign greater weight to disappointing outcomes. These preferences have

proven valuable in explaining several prominent asset pricing puzzles in equity markets (Cam-

panale et al.; 2010; Bonomo et al.; 2011; Schreindorfer; 2019) and fixed income markets

(Augustin and Tédongap; 2016, 2021), non-participation in the stock market (Ang et al.;

2005), and cross-sectional return anomalies (Delikouras; 2017; Farago and Tédongap; 2018;

Delikouras and Kostakis; 2019). They also explain puzzling portfolio patterns that cannot

be rationalized under standard utility frameworks (Dahlquist et al.; 2016).

This paper develops a novel theoretical and empirical framework for portfolio selection

under GDA preferences in a multi-asset setting. Our approach departs from much of the

existing literature by avoiding parametric assumptions on asset return dynamics and instead

focusing on a model-free, single-period, buy-and-hold environment. Building on the work

of Brandt (1999) and Ait-sahalia and Brandt (2001), we use high-frequency (daily) data

to estimate optimal portfolios using the generalized method of moments (GMM), thereby

allowing precise inference about tail-dependent quantities that are otherwise difficult to assess

at low frequencies.

Our key theoretical contribution is to show that optimal portfolio choice under GDA pref-

erences can be reformulated within a nonstandard mean-variance (MV) framework, where

both the mean and variance are endogenously adjusted to reflect downside risk. To achieve

this, we derive a fixed-point representation that yields an approximate closed-form solu-
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tion using improved yet standard density approximations (see Yogo; 2006; Tédongap; 2015)

within the moment condition. This structure produces three preference-adjusted quantities:

an endogenous mean vector, an endogenous covariance matrix, and an endogenous risk aver-

sion coefficient—a weighted average of standard and downside-specific risk aversions. In this

GDA-augmented MV setting, the investor allocates wealth to the risk-free asset, the standard

MV-efficient fund, and a specific GDA fund that hedges the risk of disappointment. This

latter fund further decomposes into three distinct components: (i) a pure disappointment-

hedging fund, (ii) a correction to the MV-efficient fund based on asset-specific downside

(co)variances, and (iii) a corresponding adjustment to the hedging component. These funds

reflect the mechanisms through which psychological frictions shape asset demand. Cru-

cially, this decomposition is fully endogenous and varies between investors, which excludes

a universal fund separation theorem under GDA, unlike models with more restrictive return

structures (e.g., Simaan; 1993; Dahlquist et al.; 2016; Tédongap and Tinang; 2022).

To facilitate cross-investor comparisons, we introduce a novel concept of effective risk

aversion—the level of risk aversion that would yield the endogenous mean-variance cer-

tainty equivalent in a standard MV framework evaluated at the GDA investor’s optimal

portfolio. This enables the recasting of GDA investor preferences into a standard mean-

variance framework and provides a helpful benchmark for comparing how disappointment

aversion reshapes investor behavior across different preference specifications and horizons.

We evaluate our theory using daily data from 1989 to 2022 across five major asset classes:

cash, equity, commodity, bond, and real estate. Our empirical benchmark analysis focuses

on short investment horizons ranging from one to twenty trading days, a setting rarely

examined in the portfolio choice literature. While most studies analyze monthly or longer

horizons and rely on predictive return dynamics (e.g., Brandt and Santa-Clara; 2006; Pastor

and Stambaugh; 2012), our framework captures investor behavior over short holding periods

using only observed return distributions.

Equity investing is often said to reward patience, with risk believed to decline over longer

holding periods. Yet, the high cost of long-dated downside protection—such as deep out-of-

the-money put options—tells a different story (Ralfe; 2024). While this disconnect has fueled

debate over long-horizon risk, portfolio choice at short horizons—ranging from one day to a

few weeks—has received surprisingly little attention despite its central role in risk monitor-

ing, regulatory capital assessments, and the design of short-dated products. These horizons
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are also where behavioral frictions may be most acute: investors face frequent performance

evaluations and exhibit heightened sensitivity to losses, which can amplify the effects of dis-

appointment aversion. Moreover, return distributions at short horizons deviate sharply from

normality, with pronounced skewness and kurtosis, further motivating downside-sensitive

preference models. Our paper fills this gap by analyzing short-horizon asset allocation under

GDA in a model-free setting, highlighting how psychological frictions reshape risk-taking

behavior over time.

Even without explicit rebalancing or intertemporal motives, investors exhibit strong sen-

sitivity to short-term disappointment risk. This complements dynamic models and suggests

that behavioral preferences can generate meaningful horizon effects—even in a static setting

with no assumptions about the return dynamics.

Our fixed-point approximation yields highly accurate results, capturing more than 98% of

the true certainty equivalent across all horizons, even under strong aversion and asymmetry.

When the disappointment threshold coincides with the certainty equivalent (i.e., symmetric

disappointment), investors withdraw entirely from risky assets once the downside penalty

exceeds a horizon-specific threshold—generalizing the nonparticipation result of Ang et al.

(2005) to a multi-asset, model-free context. This withdrawal point rises from just 0.10 at a

one-day horizon to 0.70 at twenty days.

The welfare loss from ignoring the downside asymmetries is substantial. For investors

with moderate disappointment aversion and short investment horizons, relying on a standard

mean-variance strategy leads to a welfare loss exceeding 7% of their certainty equivalent. This

gap widens with a stronger aversion to disappointment and a more nuanced understanding

of the definition of disappointment. Standard mean-variance portfolios sometimes lose up to

14% of certainty equivalent value, highlighting the importance of hedging downside risk.

Interestingly, GDA investors who fear falling short of their certainty equivalent—say, by

at least 2.5%—and those disappointed unless outcomes exceed it by the same margin exhibit

symmetric but opposite forms of disappointment perception. However, the behavior is not

equally sensitive in both directions: aversion to downside losses outweighs the desire for

upside gains, consistent with previous findings. As a result, holding other factors constant,

the certainty equivalent of the downside-focused investor converges more slowly to that of

the expected utility (EU) benchmark as the disappointment threshold shifts away from the

certainty equivalent. This asymmetry reveals a fundamental skew in the way disappointment

3



influences risk attitudes.

A central empirical finding of our study is that, under GDA preferences and short hori-

zons, investors’ willingness to assume risk declines with the investment horizon. For example,

a representative investor who experiences disappointment when returns fall at least 2.5% be-

low the certainty equivalent reduces their stock allocation from 46% to 27% and their bond

allocation from 124% to 55% as the horizon extends from one to twenty trading days. This

pattern sharply contrasts with the dominant predictions of dynamic portfolio theory at longer

horizons, where risk-taking typically increases with horizon due to return mean reversion or

intertemporal hedging motives (e.g., Merton; 1969; Campbell and Viceira; 2002; Gollier;

2002). When returns are predictable—often through the price-dividend ratio—standard ex-

pected utility models imply that the variance of cumulative returns grows more slowly than

the mean, improving the long-term risk-return trade-off. This implication is widely echoed

in empirical findings and investment advice (e.g., Bogle; 1994; Malkiel; 1996; Ameriks and

Zeldes; 2004; Calvet and Campbell; 2009).

However, some exceptions challenge this conventional view. Barberis (2000) shows that

incorporating parameter uncertainty into an otherwise i.i.d. return environment can reduce

long-term equity exposure. Similarly, Gollier and Zeckhauser (2002) demonstrate that, under

expected utility and complete markets, longer horizons increase risk-taking only if absolute

risk tolerance is convex—highlighting that a rising risk profile with the horizon is not a

universal result. Without such restrictive assumptions, our findings show that Generalized

Disappointment Aversion reverses the standard horizon-risk logic at short horizons. For

investors who experience disappointment when outcomes fall below a benchmark lower than

their certainty equivalent, the perceived probability of loss rises with the horizon, amplifying

the psychological cost of risk. Conversely, for investors disappointed unless outcomes exceed

a benchmark above their certainty equivalent, the perceived value of upside gains diminishes

over time due to temporal averaging. In both cases, GDA preferences induce a nonstandard

horizon-risk profile marked by increasing conservatism as the horizon lengthens—even in a

static, model-free environment—underscoring the pivotal role of psychological frictions in

shaping optimal portfolio allocations.

We note, however, that this pattern does not emerge under symmetric disappointment

preferences—i.e., when the disappointment threshold equals the certainty equivalent, as in

Gul (1991). In such cases, and when disappointment aversion is sufficiently low, both the cer-

4



tainty equivalent and optimal risk exposure increase with the investment horizon, consistent

with standard predictions. Therefore, the decreasing horizon-risk relationship we document

is a distinctive feature of the GDA framework of Routledge and Zin (2010), which allows

for asymmetric disappointment thresholds and captures richer behavioral responses across

horizons.

While our approach generalizes to longer horizons, the approximation becomes less reli-

able as the horizon increases, and the endogenous mean-variance structure no longer holds

the same level of accuracy. Nonetheless, extending the exact numerical solution up to sev-

eral months reveals a striking U-shaped risk profile: investors initially reduce risk exposure

with horizon but eventually increase it as standard performance metrics—such as improving

kurtosis, less negative skewness, and higher annualized Sharpe ratios—begin to dominate

behavioral frictions. These results highlight that psychological asymmetries drive conserva-

tive behavior at short horizons but fade in importance over time. Hence, our main insights

and most robust contributions concern the short end of the horizon spectrum, where disap-

pointment aversion reshapes risk attitudes and generates nonstandard portfolio behavior.

The remainder of the article is organized as follows. Section 2 presents the theoretical

portfolio choice framework, which features a model-free, static environment with a fixed

investment horizon and generalized disappointment aversion preferences. We derive the

first-order condition for optimal asset allocation and show how this leads to a nonstandard

mean-variance representation under regular and downside density approximations. This for-

mulation admits a dual interpretation. In addition, it defines an effective risk aversion coef-

ficient under GDA and enables a tractable decomposition of the optimal portfolio. Section 3

elaborates on this decomposition, distinguishing between common and investor-specific com-

ponents and interpreting their economic functions. Section 4 describes the data, summarizes

key empirical moments, and reports the main results, including certainty equivalent com-

parisons, portfolio weights, approximation accuracy, hedging benefits, and horizon effects.

Section 5 concludes. An internal appendix provides analytical derivations supporting the

main results. An online appendix extends the analysis to include performance evaluation, il-

lustrating how our GDA-based framework informs practical asset and portfolio performance

measurement. It also provides additional tables and figures to complement the empirical

findings.
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2 Theoretical Setup

We consider an economy with n+ 1 assets, with n ≥ 1. An investor can allocate her wealth

between n risky securities (i = 1, 2, . . . , n) and a risk-free asset (i = 0). Similarly to Ang

and Bekaert (2002), Das and Uppal (2004), Ang et al. (2005), Guidolin and Timmermann

(2008), and Dahlquist et al. (2016), we consider a finite-horizon setup with the utility defined

over the terminal wealth. Our framework is set in discrete time. Let R = (R1, R2, . . . , Rn)
⊤

denote the vector of the simple gross returns on risky assets, where Ri is the return of the

asset i, and let R0 denote the simple gross risk-free return. Throughout the article, we will

make no specific assumptions about the distribution of returns. Our theoretical findings

are independent of the distribution of returns, and our empirical findings are based on their

realization over a historical sample.

A portfolio strategy can be described by a n× 1 vector w = (w1, w2, . . . , wn)
⊤ where wi

is the portfolio weight in the risky asset i. The simple gross return of the portfolio strategy

w is given by

Rw = R0 + w⊤ (R− 1R0) , (1)

where 1 denotes the n-dimensional vector of ones. We assume no short-selling or borrowing

constraints, so we have w ∈ Rn. We aim to characterize, both theoretically and empirically,

the optimal value of w that an investor chooses to maximize a given welfare objective. In

this article, the objective is considered the certainty equivalent of the investor’s terminal

wealth over a given investment horizon, defined by the investor’s attitude towards risk.

2.1 Investor’s attitude towards risk and optimal portfolio solution

We consider an investor whose objective at the initial date (say, 0), starting with the initial

wealth W0, is to maximize the certainty equivalent of the terminal wealth Wτ , where τ is

the final date, i.e., the investment horizon. The terminal wealth may be written

Wτ = W0Rw,τ (2)

where Rw,τ is the wealth simple gross return over the investment horizon τ , and w is the

investor’s buy-and-hold portfolio strategy over the investment horizon. So, Rw,τ is the simple

gross return on the investor’s portfolio.

6



We assume the investor has generalized disappointment aversion (GDA) preferences, as in

Routledge and Zin (2010). GDA preferences have the desirable property that investors care

differently about downside losses than they do about upside gains. A disappointment-averse

investor is loss-averse around an endogenous reference point proportional to her certainty

equivalent. Following Routledge and Zin (2010), for the GDA investor, the certainty equiv-

alent of terminal wealth, C (Wτ ), is implicitly defined by

ηU
(
C (Wτ )

)
= E

[
U (Wτ )

]
− ℓE

[(
U
(
κC (Wτ )

)
− U (Wτ )

)
I
(
Wτ < κC (Wτ )

)]
, (3)

where I (·) is an indicator function that equals one if the condition is met and zero otherwise,

and

U (x) =


x1−γ

1− γ
if γ > 0 and γ ̸= 1,

lnx if γ = 1.

(4)

The parameter γ > 0 measures the investor’s risk aversion, ℓ ≥ 0 is the investor’s degree

of disappointment aversion, and κ > 0 is the percentage of her certainty equivalent below

which outcomes are considered disappointing. The parameter η is not free and is defined as

η = 1− ℓ
(
κ1−γ − 1

)
I (κ > 1) , (5)

and ensures that the certainty equivalent is appropriately scaled even when κ > 1 so that

the certainty equivalent of a constant value, x, equals itself (i.e., C(x) = x).

If the investor’s degree of disappointment aversion is zero (ℓ = 0), the definition of the

certainty equivalent from (3) simplifies to

U
(
C (Wτ )

)
= E

[
U (Wτ )

]
. (6)

In this case, the investor has expected utility (EU) preferences with the power utility.

Throughout the paper, we refer to such an investor as the EU investor. When ℓ > 0,

outcomes lower than κC (Wτ ) receive an extra weight and lower the investor’s certainty

equivalent relative to EU. To maximize the certainty equivalent, a disappointment-averse

investor would like to avoid outcomes below κC (Wτ ). The penalty for disappointing out-

comes increases with ℓ, so this parameter modulates the importance of disappointment versus
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satisfaction and can be interpreted as the degree of disappointment aversion.

The parameter κ defines the threshold for disappointing outcomes relative to the certainty

equivalent. The special case of κ = 1 corresponds to the original disappointment aversion

(DA) preferences of Gul (1991). If κ < 1, the random future value is considered disappointing

if it lies sufficiently below today’s certainty equivalent; if κ > 1, the random future value

must be sufficiently far above the certainty equivalent to be considered not disappointing.

Previous literature on disappointment aversion primarily concerns asset pricing and the κ < 1

case. Routledge and Zin (2010) briefly discuss the κ > 1 possibility also in an asset pricing

context,1 but otherwise, the literature has mainly ignored this setting. One exception is

Dahlquist et al. (2016), who show in a portfolio choice context that an investor with κ > 1

endogenously displays a preference for negative asymmetry in asset returns. As pointed out

by Dahlquist et al. (2016), the setting where the reference point is lower than the certainty

equivalent is arguably more relevant for understanding real-life investor behavior. However,

it might be of general interest to study the portfolio choice implications of a setting where

the reference point is higher than the certainty equivalent. We follow these authors and

demonstrate that different values of κ lead to diverse investor behavior. Similarly, we refer

to an investor with κ = 1 as a DA investor and an investor with κ ̸= 1 as a GDA investor.

Due to the homogeneity of utility function (4), we have

C (Wτ ) = W0C
(
Rw,τ

)
. (7)

Ultimately, the investor’s objective is to maximize the certainty equivalent of the portfolio

gross return, C
(
Rw,τ

)
, given by

ηU (Cτ ) = E
[
U
(
Rw,τ

)]
− ℓE

[(
U (κCτ )− U

(
Rw,τ

))
I
(
Rw,τ < κCτ

)]
, (8)

in which we have used the short-hand notation Cτ for C
(
Rw,τ

)
. We show in Appendix A

that the first-order condition for maximizing the certainty equivalent Cτ with respect to w

1In an intertemporal consumption-based general equilibrium asset pricing model, Routledge and Zin
(2010) discuss the value of this parameter in connection with the autocorrelation of consumption growth
modeled as a simple two-state Markov chain. To generate counter-cyclical risk aversion, they state that a
value less than one for κ is needed when there is a negative autocorrelation of consumption growth and a
value greater than one when the autocorrelation is positive. The economic mechanism behind this link is
the substitution effect.
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is given by the following Euler equation:

E
[
R−γ

w,τ

(
1 + ℓI (Dτ )

)
Re

τ

]
= 0, (9)

where Dτ defines the investor’s disappointing event, i.e., Dτ ≡
{
Rw,τ < κCτ

}
, and Re

τ defines

the vector of asset excess returns over the risk-free rate, i.e., Re
τ ≡ Rτ − 1R0,τ . It appears

that equations (9) and (8) must be solved simultaneously for the optimal allocation w and

the optimal certainty equivalent Cτ . Formally, given asset returns, investor’s preference

parameters, and the allocation w, equation (8) is solved for the certainty equivalent Cτ which
is then substituted into equation (9). At this point, equation (9) is a system of n equations

with n unknowns that are the elements of the vector w. Since the system is expressed in the

form of moment conditions, it appears that given the stationary asset returns historical time

series data and the investor’s preference parameters, w is the vector parameter estimate of

an identified GMM system. This approach of solving an asset allocation problem without

imposing any parametric structure on the asset return dynamics is developed in Brandt

(1999) and Ait-sahalia and Brandt (2001).

2.2 Optimal portfolio characterization

Standard mean-variance preferences in a portfolio choice model represent the preferences

of an investor who evaluates alternative portfolios based on the mean and the variance of

returns. As shown previously, the optimal portfolio w in our GDA setting is a solution to a

nonlinear system of equations. It would be interesting to characterize this solution further

to better understand the different return attributes on which investors with non-standard

GDA preferences evaluate alternative portfolios.

We show in Appendix C that the above first-order condition for optimality, i.e., equation

(9), can equivalently be written as follows:

E

 R−γ
w,τ

E
[
R−γ

w,τ

]Re
τ

+ ℓπ∗
D,τE

 R−γ
w,τ

E
[
R−γ

w,τ | Dτ

]Re
τ | Dτ

 = 0 (10)
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with

π∗
D,τ ≡

E
[
R−γ

w,τ I (Dτ )
]

E
[
R−γ

w,τ

] = E

 R−γ
w,τ

E
[
R−γ

w,τ

]I (Dτ )

 = E∗ [I (Dτ )
]
= prob∗ (Dτ ) , (11)

where E∗ [·] denotes the distorted expectation operator induced by the change-of-measure
R−γ

w,τ

E
[
R−γ

w,τ

] , and prob∗ (·) denotes the associated distorted probability operator. In fact, since

the term
R−γ

w,τ

E
[
R−γ

w,τ

] is positive and has an expectation equal to unity, it can be considered as

distorting the original probability distribution of the asset returns. As discussed by Hansen

et al. (2008), this distortion indicates a rather different interpretation of the parameter γ.

Following Anderson et al. (2003), the parameter γ may reflect the investor’s concerns about

not knowing the precise riskiness that she confronts in the marketplace. In this case, the

original probability distribution of asset returns is viewed as a statistical approximation,

and the investor is concerned that it may be misspecified. Therefore, we refer to π∗
D,τ as

the beliefs-implied disappointment probability, that is, the disappointment probability as

perceived by the investor based on her beliefs.

From equation (10), we consider the following density approximations:

R−γ
w,τ

E
[
R−γ

w,τ

] ≈ 1− γτ

(
Re

w,τ − E
[
Re

w,τ

])
R−γ

w,τ

E
[
R−γ

w,τ | Dτ

] ≈ 1− γD,τ

(
Re

w,τ − E
[
Re

w,τ | Dτ

])
,

(12)

where

γτ =
σ
[
R−γ

w,τ

]
E
[
R−γ

w,τ

] /σ
[
Re

w,τ

]
and γD,τ =

σ
[
R−γ

w,τ | Dτ

]
E
[
R−γ

w,τ | Dτ

] /σ
[
Re

w,τ | Dτ

]
. (13)

As previously discussed, the first density in equation (12) distorts the original probability

distribution of asset returns, while the corresponding approximation preserves the mean and
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volatility.2 Likewise, the second density distorts the probability distribution of asset returns

conditional on the disappointing event, and the corresponding approximation preserves the

mean and the volatility conditional on the disappointing event. The expression for γτ is

appealing. It is the ratio of two quantities. The numerator reminds us of the Hansen-

Jagannathan bound and the denominator is the portfolio standard deviation. Indeed, if ℓ = 0

so that the investor does not care about downside risk, the numerator in the expression for γτ

in equation (13) represents the maximum Sharpe ratio attainable by the investor. Dividing

the Sharpe ratio by the portfolio standard deviation yields the ratio of the expected excess

return to the variance, a measure of risk aversion as typically understood in the asset pricing

literature. Based on this observation, we refer to γτ as the investor’s standard level of risk

aversion. By analogy, we refer to γD,τ as the investor’s aversion to downside risk.

Substituting out the density approximations (12) into equation (10) and rearranging, we

show in Appendix C that the optimal portfolio may be expressed as the following fixed-point

equation:

w =
1

γ̃τ
Σ̃−1

τ µ̃τ (14)

where


Σ̃τ =

(
1− αD,τ

)
Στ + αD,τΣD,τ and µ̃τ =

(
1− λD,τ

)
µτ + λD,τµD,τ

with λD,τ =
ℓπ∗

D,τ

1 + ℓπ∗
D,τ

, γ̃τ =
(
1− λD,τ

)
γτ + λD,τγD,τ and αD,τ =

λD,τγD,τ

γ̃τ
,

where µτ = E [Re
τ ] and Στ = var [Re

τ ] are respectively the mean vector and the variance-

covariance matrix of risky asset excess returns, and µD,τ = E
[
Re

τ | Dτ

]
and ΣD,τ = var

[
Re

τ | Dτ

]
are respectively the mean vector and the variance-covariance matrix of risky asset excess re-

turns conditional on the disappointing event. The coefficients γ̃τ , αD,τ , and λD,τ , all depend

on the optimal portfolio weight vector, w (i.e., they are endogenously determined). Likewise,

the downside event Dτ , as well as the downside variance-covariance matrix of the assets, ΣD,τ ,

and the downside expected excess returns of the assets, µD,τ , are all endogenous, therefore

justifying why downside risk is said to be endogenous in this setting.

2Density approximations similar to equation (12) are used elsewhere in the literature, for example to
derive linear cross-sectional implications of asset pricing models (see for example Yogo; 2006, and Farago
and Tédongap; 2018). These authors however generally match only the unitary mean of the density, and
this would mean γτ = γ, while we also match its volatility. Matching the volatility of investors’ beliefs can
be crucial in certain applications, such as determining the optimal size of the equity premium.

11



Equation (14) is finally a fixed-point equation that is equivalent to the Euler equation (9)

under density approximations (12). To solve for the optimal portfolio under these conditions,

without imposing any parametric structure on the asset return dynamics, we proceed as

follows. Given historical time series data on asset returns, investor preference parameters,

and allocation w, we replace expectation operators in equation (8) by sample moments and

solve for the equivalent certainty Cτ which is then substituted in equation (14). At this point,

(14) is a nonlinear fixed-point equation in the portfolio weight w, and we solve for w after

replacing the population standard and downside first and second moments of asset returns

by their sample counterparts. To assess the impact of the density approximations (12) on

the portfolio solution, we will compare the certainty equivalent achieved by the solution

obtained via the Euler equation (9) to the certainty equivalent achieved by the solution

obtained through the fixed-point equation (14).

Equation (14) suggests that GDA investors care not only about the standard mean and

variance-covariance of asset returns but also their downside mean and variance-covariance.

This latter observation leads to an elegant interpretation of the GDA portfolio choice problem

in a mean-variance framework.

Weighted-average mean-variance interpretation. Given the endogenous values of γτ ,

γD,τ and λD,τ , and given the endogenous downside expected returns vector µD,τ and downside

variance-covariance matrix ΣD,τ of the risky asset returns, it is interesting to observe that

the optimal allocation (14) can also be achieved by solving the following weighted-average

mean-variance (WAMV) investment problem:

max
w

(
1− λD,τ

)(
µw,τ −

γτ
2
σ2
w,τ

)
+ λD,τ

(
µwD,τ −

γD,τ

2
σ2
wD,τ

)
, (15)

where µw,τ = w⊤µτ and σ2
w,τ = w⊤Στw are the standard expected excess return and the

standard variance of the investor’s portfolio, while µwD,τ = w⊤µD,τ and σ2
wD,τ = w⊤ΣD,τw are

the downside expected excess return and the downside variance of the investor’s portfolio. In

particular, equation (15) validates our previous interpretation of the coefficients γτ and γD,τ .

In forming the WAMV certainty equivalent that she maximizes for the optimal portfolio,

the investor assigns the weight 1− λD,τ to the standard mean-variance certainty equivalent

µw,τ −
γτ
2
σ2
w,τ in which γτ is interpretable as the investor’s standard risk aversion as usually
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understood. The remaining weight λD,τ is assigned to what we refer to as the downside mean-

variance certainty equivalent µwD,τ −
γD,τ

2
σ2
wD,τ in which, by analogy, γD,τ is interpretable

as the investor’s downside risk aversion. The weight λD,τ assigned to the downside mean-

variance certainty equivalent reflects the investor’s degree of disappointment aversion ℓ and

her endogenous perception for downside risk π∗
D,τ .

Endogenous mean-variance interpretation. Ultimately, another interpretation of the

optimal portfolio solution in equation (14) is that a GDA investor endogenously behaves just

like a mean-variance investor. This is because, given the endogenous quantities γ̃τ , Σ̃τ and µ̃τ ,

jointly implied by the GDA investor preferences and observed returns, the optimal portfolio

in equation (14) can also be achieved by solving the following endogenous mean-variance

investment problem

max
w

µ̃w,τ −
γ̃τ
2
σ̃2
w,τ , (16)

where we refer to µ̃w,τ = w⊤µ̃τ and σ̃2
w,τ = w⊤Σ̃τw as the endogenous expected excess return

and the endogenous variance of the investor’s portfolio, respectively. It is straightforward

from equation (14) that, for any asset in the economy and any portfolio, the endogenous

expected excess return is a weighted average of the standard expected excess return and the

downside expected excess return, with the weights given by 1− λD,τ and λD,τ , respectively.

Similarly, the endogenous variance is a weighted average of the standard variance and the

downside variance, with the weights given by 1 − αD,τ and αD,τ , respectively. Likewise, we

refer to γ̃τ as the investor’s endogenous risk aversion. Therefore, equation (14) shows that

the investor’s endogenous risk aversion is a weighted average of her standard risk aversion

and her downside risk aversion, with the weights given by 1 − λD,τ and λD,τ , respectively.

Henceforth, the portfolio Σ̃−1
τ µ̃τ will be called the investor’s endogenous mean-variance fund,

as it endogenously depends on the specific investor’s GDA preference parameters.

If ℓ = 0, i.e. for EU investors, we have λD,τ = 0 and equation (15) implies that an EU

investor behaves like a typical mean-variance investor who cares only about the standard

expected excess return and the standard variance of a portfolio, consistent with the results

of Levy and Markowitz (1979) and Hlawitschka (1994). This result is also confirmed by

Dahlquist et al. (2016), who find that the non-normality of asset returns only has a marginal

effect on the optimal portfolios of EU investors. Observe from equation (14) that λD,τ = 0 is

13



equivalent to αD,τ = 0, which implies Σ̃τ = Στ and µ̃τ = µτ . The investor optimally allocates

her wealth between the risk-free asset and the standard mean-variance efficient fund Σ−1
τ µτ .

This pair of funds is identical for all EU investors, and the share of wealth invested in the

risky fund reflects the investor’s endogenous risk aversion, which appears to be equal to her

standard risk aversion (i.e., γ̃τ = γτ ).

To the contrary of an EU investor who assesses the portfolio reward through the standard

expected excess return µw,τ and the portfolio risk through the standard variance σ2
w,τ , the

GDA investor, in addition, cares about the downside expected excess return µwD,τ and

the downside variance σ2
wD,τ of a portfolio. A GDA investor assesses the reward and the

risk of a portfolio through its endogenous expected excess return µ̃w,τ and its endogenous

variance σ̃2
w,τ , respectively, each of which is a weighted average of their standard and downside

counterparts. The weight assigned to the downside counterparts in the GDA investor’s

assessment of a portfolio reward and risk reflects the investor’s degree of disappointment

aversion and her endogenous perception of downside risk.

It would be inappropriate to compare two GDA investors with different sets of preference

parameters based solely on their endogenous risk aversion (γ̃τ ). This is because each investor

evaluates portfolios using distinct endogenous mean vectors and covariance matrices of asset

returns (µ̃τ , Σ̃τ ). Following Dahlquist et al. (2016), we suggest comparing investors by their

“effective risk aversion”, hereby defined as the risk aversion level γ̃e
τ that allows them to

achieve their endogenous MV certainty equivalent in a standard MV framework. Formally,

γ̃e
τ is derived by solving:

µw,τ −
γ̃e
τ

2
σ2
w,τ = µ̃w,τ −

γ̃τ
2
σ̃2
w,τ where w =

1

γ̃τ
Σ̃−1

τ µ̃τ . (17)

In Appendix B, we prove that:

γ̃e
τ = γ̃τ

(2µτ − µ̃τ )
⊤ Σ̃−1

τ µ̃τ

µ̃⊤
τ Σ̃

−1
τ Στ Σ̃−1

τ µ̃τ

. (18)

3 Optimal portfolio decomposition

Decomposing the portfolio strategy into its key components enhances our understanding

of the different mechanisms through which an investor forms asset demands and how each
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component is tied to a particular attribute of the investor’s attitude toward risk. We aim to

provide an endogenous decomposition of the optimal portfolio.

Dahlquist et al. (2016) impose a specific structure for asset returns in the economy

through a model in which asset returns are assumed to follow a multivariate normal-exponential

distribution. They show that this particular framework leads to a three-fund separation

strategy where a GDA investor optimally allocates wealth to the risk-free asset, the stan-

dard mean-variance efficient fund, and an additional fund reflecting return non-normality,

which they term the asymmetry-variance efficient fund. This triplet of funds is identical

for all GDA investors in their framework. The share of wealth invested in the standard

mean-variance efficient fund reflects the investor endogenous risk aversion. In contrast, the

share of wealth invested in the asymmetry-variance efficient fund additionally depends on

the investor implicit asymmetry aversion. To the contrary of Dahlquist et al. (2016), in our

current framework, we do not impose any particular model for asset returns.

We argue that a common fund separation strategy does not hold in our general and

model-free setting. That is, we generally cannot find a k-tuple of funds that is identical for

all GDA investors, so any GDA investor’s optimal portfolio can be constructed by holding

each of these k funds in appropriate ratios, where the number of funds is sufficiently smaller

than the number of individual assets in the portfolio, i.e., k << n. The fund separation

theorem does not hold in general since funds would be based on common investors’ beliefs

about expected excess returns and their variance-covariance matrix, both conditionally on

the downside event or not. However, even though all investors in our setting would observe

the same (µτ ,Στ ), it remains that their
(
µD,τ ,ΣD,τ

)
are very likely to be different, since

the downside event is endogenous and not identical for all investors, i.e., it varies with

investor’s preference parameters. Indeed, as shown in equation (14), the optimal portfolio

satisfies a two-fund structure composed of the risk-free rate and the endogenous mean-

variance fund Σ̃−1
τ µ̃τ which is not identical for all GDA investors as it endogenously depends

on the investor’s preference parameters. In what follows, we aim to dissect this investor’s

endogenous mean-variance fund to understand its formation fully.

In Appendix C, we develop from the expressions of Σ̃τ and µ̃τ in equation (14) to prove

that the GDA investor’s optimal portfolio may be decomposed into four components as

follows:

w =
1

γ̃τ

(
wMV − αD,τw

MVA
)
+

λD,τ

γ̃τ

(
wDH − αD,τw

DHA
)

(19)
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with

wMV = Σ−1
τ µτ and wMVA = AD,τw

MV

wDH = Σ−1
τ

(
µD,τ − µτ

)
and wDHA = AD,τw

DH

where AD,τ =
[
Στ + αD,τ

(
ΣD,τ − Στ

)]−1 (
ΣD,τ − Στ

)
.

(20)

Equation (19) shows that GDA investors optimally invest into four risky funds in addition

to the risk-free rate. More precisely, in addition to the risk-free rate and the standard mean-

variance efficient fund common to all investors, three additional funds are tailor-made to the

specific characteristics of the GDA investor. To the contrary of the EU investor, the GDA

investor cares about downside risk. Therefore, the GDA investor positions in these specific

funds allow her overall portfolio to deviate from the portfolio of an EU investor with equal

endogenous risk aversion. The standard mean-variance efficient fund wMV would typically

be long (short) in assets with a positive (negative) risk premium, and the amount of the

position in each asset depends on the ratio of the expected excess return to the variance

(i.e., the reward per unit risk). Let us look at the remaining funds and how they alter the

GDA investor’s optimal portfolio relative to the EU investor.

The first investor’s specific fund wDH would typically be long (short) in assets with a

positive (negative) relative downside expected excess return, where the relative downside

expected excess return is the difference between the downside expected excess return and

the standard expected excess return, i.e., elements of the vector µD,τ −µτ ; the amount of the

position in each asset depends on the ratio of the relative downside expected excess return to

the variance. Notice that the relative downside expected excess return is otherwise related

to the covariance between the excess return and the disappointing event, as we have

cov
(
Re

τ , I (Dτ )
)
= πD,τ

(
µD,τ − µτ

)
with πD,τ = E

[
I (Dτ )

]
= prob (Dτ ) . (21)

Therefore, the first investor’s specific fund is equivalent to the portfolio Σ−1
τ cov

(
Re

τ , I (Dτ )
)
,

i.e., the vector of population regression coefficients from a multiple regression of the disap-

pointment indicator onto the set of risky asset excess returns. This latter characterization

corresponds to a hedging demand, as is typical in portfolio choice literature. More precisely,

the investor hedges the disappointing event by taking a long (short) position in assets that

16



tend to rise (fall) when disappointment sets in. For this reason, we refer to this first investor’s

specific fund wDH as the disappointment-hedging fund.

By premultiplying the vector wMV by the matrix AD,τ , the second investor’s specific fund

wMVA adjusts the asset positions in the mean-variance efficient fund by accounting for their

relative downside variance (covariance), where the relative downside variance (covariance)

is the difference between the downside variance (covariance) and the standard variance (co-

variance), i.e., elements of the matrix ΣD,τ −Στ . Therefore, we refer to this second investor’s

specific fund as the downside risk-adjusted mean-variance efficient fund. Since the weight

that the investor assigns to this fund is negative as shown in equation (19), we argue that

relative to an EU investor with equal endogenous risk-aversion, the GDA investor would

typically reduce (increase) the amount of her standard mean-variance efficient fund position

in assets which the downside variance is greater (lower) than the standard variance, i.e., the

relative downside variance is positive (negative).

Likewise, by premultiplying the vector wDH by the matrix AD,τ , the third and last in-

vestor’s specific fund, wDHA, adjusts the asset positions in the disappointment-hedging fund

by accounting for their relative downside variance (covariance). Therefore, we refer to this

third investor’s specific fund as the downside risk-adjusted disappointment hedging fund.

Since the weight that the investor assigns to this fund is negative, as shown in equation (19),

we argue that the GDA investor would typically reduce (increase) the amount of her position

in the disappointment hedging fund in assets where the downside variance is greater (lower)

than the standard variance.

The above discussion on the positions and their relative amounts that each of the four

funds in equation (19) has on the different assets is straightforward in the case where the

matrices Στ and ΣD,τ are diagonal. However, in the general case, standard and downside

correlations may be nontrivial in altering the positions and relative amounts that the GDA

investor holds in each fund.

Notice from equation (19) that the three funds wDH, wMVA, and wDHA are all investor-

specific, provide downside risk hedging and can therefore be consolidated into a single

investor-specific downside risk hedging fund, wGDA, as follows:

w =
1

γ̃τ
wMV +

1

γ̃τ
wGDA with wGDA = λD,τw

DH − αD,τw
MVA − λD,ταD,τw

DHA. (22)
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Each fund in equation (22) can be normalized by the absolute sum of its weights to

preserve the nature of the positions (long or short) held in each asset:

w̄MV ≡ wMV∣∣1⊤wMV
∣∣ and w̄GDA ≡ λD,τw

DH − αD,τw
MVA − λD,ταD,τw

DHA∣∣λD,τ1⊤wDH − αD,τ1⊤wMVA − λD,ταD,τ1⊤wDHA
∣∣ . (23)

An alternative formulation of the investor’s portfolio decomposition in equation (22)

leads to a three-fund representation that includes the risk-free asset, the common mean-

variance efficient fund w̄MV, and a single investor-specific GDA fund w̄GDA. Under this

representation, the optimal portfolio rule in equation (19) can be rewritten as:

w = αMVw̄MV + αGDAw̄GDA (24)

where the respective weights assigned to these normalized funds are given by:

αMV ≡ 1

γ̃

∣∣∣1⊤wMV
∣∣∣ and αGDA ≡ 1

γ̃

∣∣∣λD,τ1
⊤wDH − αD,τ1

⊤wMVA − λD,ταD,τ1
⊤wDHA

∣∣∣ .
(25)

The weight αGDA quantifies how much the GDA investor’s optimal portfolio deviates

from an expected utility (EU) investor with equal endogenous risk aversion. Specifically,

relative to such an EU investor, the GDA investor reallocates available cash to modify her

risky asset positions by trading in her specific fund. Suppose that a particular structure is

imposed on asset returns. In that case, the fund w̄GDA may become linear in other funds

that depend only on the asset return distribution parameters, leading to a standard fund

separation strategy. This is particularly the case in Dahlquist et al. (2016). We will further

investigate the heterogeneity in the composition of the GDA investor’s specific fund across

different sets of preference parameters.

4 Empirical assessment

4.1 Data and summary statistics

This section evaluates our theoretical implications using real data on risky assets and the

risk-free rate. This evaluation amounts to computing the optimal portfolio choice that max-
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imizes the GDA investor’s certainty equivalent for the portfolio gross return over a specified

investment horizon. The investment portfolio comprises five asset classes: the risk-free rate

proxied by the 3-month Treasury bill secondary market rate sourced from the FRED database

(DTB3); equities represented by the S&P500 composite index (S&PCOMP); commodities as

represented by the S&P Goldman Sachs commodity index (GSCITOT); bonds represented

by the United States 10-Year Government Benchmark Bond index (BMUS10Y); and real

estate measured by United States Real Estate Investment Trusts (REITSUS). We use daily

data, and our sample ranges from January 2nd, 1989 to October 31st, 2022.

Table 1 presents the summary statistics of excess returns for the four risky asset classes—stocks

(SK), commodities (CY), bonds (BD), and real estate (RE)—over different investment

horizons: one day (τ = 1), five days (τ = 5), ten days (τ = 10) and twenty days (τ = 20).

These horizons roughly correspond to daily, weekly, biweekly, and monthly returns, assum-

ing approximately 22 monthly trading days, as is standard in the finance literature (e.g.,

Corsi; 2009). The multiday return series are constructed using overlapping data, resulting

in a sample size of T − τ + 1, where T is the original daily data sample size.

The daily average excess returns, as reported in Table 1, are 0.029% for stock, 0.013% for

commodity, 0.013% for bond, and 0.023% for real estate. Their respective standard devia-

tions are 1.123%, 1.348%, 0.446%, and 1.490%, resulting in daily Sharpe ratios ranging from

0.009 for commodity to 0.030 for bond. In particular, all risky assets exhibit excess kurtosis,

with real estate showing the highest and bond the lowest. This is further confirmed by

the significant differences between the minimums and the fifth quantiles (Q05) and between

the maximums and the ninety-fifth quantiles (Q95), highlighting the fat-tailed nature of the

return distributions.

Skewness is particularly important in this study on downside risk and its impact on

portfolio choice. The daily skewness is negative for all assets (ranging from −0.095 for bonds

to −0.498 for the commodity) except for real estate, which exhibits a positive skewness of

0.243. As the horizon lengthens, the skewness of real estate decreases at τ = 5 (0.030) before

turning negative at τ = 10 (−0.762) and τ = 20 (−0.660). Similarly, the skewness of the

stock and the commodity becomes more negative at longer horizons, reaching −0.794 and

−0.495, respectively, at τ = 10, and −0.812 and −0.434 at τ = 20. In contrast, the skewness

of the bond returns becomes more positive as the horizon increases, moving from −0.095

on the daily horizon to 0.201 on the monthly horizon. Bond always shows the smallest
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magnitude among skewness values on different horizons (except for τ = 5).

These findings indicate that standard distributional assumptions (e.g., Dahlquist et al.;

2016), which imply regularity in higher-order moments across horizons (particularly dimin-

ishing skewness with increasing horizon), do not hold in the data. This corroborates the

findings of Neuberger (2012), who showed that the skewness of the equity index returns

increases with the investment horizon, up to a year, with significant economic implications.

These results also justify adopting a portfolio estimation approach based on empirical re-

turn distributions at each horizon rather than relying on theoretical distributions that fail

to capture critical features of aggregated returns.

In terms of correlations, bond maintains negative correlations with stock and commodity

across all horizons (ranging from −0.193 at τ = 1 to −0.123 at τ = 20 for stock and −0.164

to −0.265 for commodity). The magnitude of bond-stock’s correlation tends to decrease as

the horizon increases, whereas it seems to increase for bond-commodity’s correlation. Bond

also exhibits weaker correlations with real estate, which vary monotonically from −0.104 at

τ = 1 to 0.051 at τ = 20. Stocks and real estate remain the most strongly correlated assets,

with correlations consistently around 0.66 across horizons.

Table A1 in the external appendix provides the same summary statistics using nonover-

lapping data. With nonoverlapping data, the sample size for τ -day returns becomes T/τ ,

compared to T − τ +1 for overlapping data. Interestingly, the patterns observed using over-

lapping data are consistent with those from the nonoverlapping data, but overlapping data

offer the advantage of increasing the effective sample size. Since the descriptive statistics

using the two approaches are nearly identical in this static context - where serial dependence

in the data (affected by overlapping) is irrelevant - the overlapping approach is well justified.

Furthermore, a large sample size is critical to capture rare disappointing events under GDA

investor preferences, which feature a kink in the utility function. Since the probability of

disappointing events may be small in population, a larger sample size helps bring their pro-

portion closer to the true probability by the law of large numbers. The overlapping method

improves the precision of our GMM estimates for portfolio weights.

While our empirical analysis emphasizes the economic implications of optimal portfo-

lios under GDA preferences, we do not report standard errors or confidence intervals for

portfolio weights or certainty equivalents. This choice reflects a deliberate trade-off between

analytical clarity and statistical completeness. Given the large sample size (over 8,000 daily
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observations) and the use of high-frequency data, the GMM-based portfolio estimates are

precise, and sampling variability is minimal in practice. As such, point estimates are enough

to illustrate our main economic findings without loss of interpretive rigor. Nonetheless, if

needed, statistical inference—such as Wald tests or bootstrap confidence intervals—can be

readily implemented for specific quantities of interest.

4.2 Certainty equivalent and premium for downside risk hedging

We begin by analyzing the certainty equivalent of the optimal portfolio, the central financial

objective in our framework, and how it varies with the GDA preference parameters and the

investment horizon. These results are illustrated in Figure 1A, which plots the certainty

equivalent of the optimal portfolio as a function of ℓ ∈ [0, 3] for different investment horizons

(τ ∈ {1, 5, 10, 20}) and combinations of preference parameters: risk aversion γ = 3, and rel-

ative disappointment threshold κ ∈ {0.95, 0.975, 1, 1.025, 1.05}. Certainty equivalent values

are annualized using the formula C360/τ
τ − 1 and are reported in percentage terms. Gener-

ally, the certainty equivalent declines as ℓ increases since a higher disappointment aversion

amplifies the investor’s effective risk aversion, reducing risk-taking and ultimately lowering

the certainty equivalent.

A key observation is that when κ = 1, regardless of the investment horizon, our numerical

results reveal a sharp decrease in the certainty equivalent as the degree of disappointment

aversion ℓ increases. Eventually, the certainty equivalent flattens at its minimum value

of 2.72%, corresponding to the annualized risk-free rate. This suggests that the investor

optimally allocates all her wealth to the risk-free asset and does not participate in the risky

asset market. This finding aligns with the results of Ang et al. (2005), who demonstrate that

disappointment-averse (DA) investors with κ = 1 exhibit optimal nonparticipation in the

stock market when the degree of disappointment aversion exceeds a critical threshold, i.e.,

there exists ℓ∗ such that the optimal portfolio satisfies w = 0 if ℓ ≥ ℓ∗. Their proof applies

to settings with a single risky asset. To our knowledge, no analytical proof exists for a DA

framework with multiple risky assets.

Tédongap and Tinang (2022) extend the theoretical understanding of optimal nonpartic-

ipation by proving its occurrence in settings with multiple risky assets. They demonstrate

that in a framework where investors minimize portfolio variance subject to linear constraints
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on expected return and non-normality, non-participation is equivalent to holding a normally

distributed portfolio with a non-positive risk premium. This suggests that earlier results on

optimal nonparticipation with a single risky asset (Ang et al.; 2005) also extend to settings

with multiple risky assets. Dahlquist et al. (2016) further illustrate the optimal nonpartici-

pation in a DA framework but do not provide an analytical characterization. The novelty of

our contribution lies in deriving numerical results on the nonparticipation of DA investors

without imposing any assumptions on the return distributions, in contrast to Tédongap and

Tinang (2022) and Dahlquist et al. (2016), which assume multivariate normal-exponential

returns. This result is clearly illustrated in Figure 1A.

Our numerical solutions reveal that ℓ∗, the threshold beyond which DA investors with

κ = 1 invest exclusively in the risk-free asset, depends on the investment horizon. Specifically,

we observe that ℓ∗ is approximately 0.10, 0.30, 0.45, and 0.70 for the horizons of one day,

five days, 10 days, and 20 days, respectively. This implies that for κ = 1, longer investment

horizons require a higher disappointment aversion to trigger complete withdrawal from risky

asset markets.3

4.2.1 Effect of κ on certainty equivalent

Figure 1A also shows that the certainty equivalent increases for κ < 1 as κ decreases toward

zero, keeping everything else constant. A lower κ reduces the probability of disappointment,

encouraging greater risk-taking. For example, the certainty equivalent for κ = 1 is lower than

for κ = 0.975, which in turn is lower than for κ = 0.95, and so on, ultimately converging

toward the certainty equivalent of the EU investor, that is, the value at ℓ = 0, where all

curves κ intersect in the graph. From equation (9), we observe that as κ < 1 approaches

zero, the set of disappointing events shrinks, reducing the probability of disappointment. As

a result, the Euler condition governing the GDA investor’s optimal allocation increasingly

resembles that of the EU investor, leading to a convergence in their optimal portfolios and

certainty equivalents. This observation highlights that all else being equal, the EU investor’s

allocation is riskier than that of any GDA investor, as it corresponds to a GDA investor with

κ < 1, for whom disappointment never occurs.

3Kontosakos et al. (2024) also illustrated in Figure 4 of their study that DA investors with κ = 1 require
higher levels of disappointment aversion to abstain from risky asset markets as the investment horizon
increases, implying a decreasing effective risk aversion over longer horizons.
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Similarly, for κ > 1, the certainty equivalent increases as κ increases, keeping all oth-

ers constant. A higher κ shifts the investor’s focus toward more considerable upside gains,

encouraging greater risk-taking. For example, the certainty equivalent for κ = 1 is lower

than that for κ = 1.025, which in turn is lower than that for κ = 1.05, and so on, ulti-

mately converging to the EU investor’s certainty equivalent. From equation (9), as κ > 1

increases toward infinity, the set of disappointing outcomes expands, driving the probability

of disappointment toward one, effectively making disappointment almost sure (since only

infinitely high gains prevent disappointment). Consequently, the Euler condition for the

GDA investor’s optimal allocation increasingly resembles that of the EU investor, leading to

similar certainty equivalents. This observation underscores that all else being equal, the EU

investor’s allocation is riskier than that of any GDA investor, as it corresponds to a GDA

investor with κ > 1, whose decision-making is primarily driven by the pursuit of the most

extreme gains.

Interestingly, GDA investors with κ = 0.975 and κ = 1.025 exhibit equal but opposite

asymmetry in disappointment perception, making them mirror images in their aversion to

downside losses versus their desire for upside gains. This is also the case for κ = 0.95 and

κ = 1.05. Figure 1A finally illustrates that the GDA investor’s certainty equivalent converges

less rapidly to that of the EU investor with the same standard risk aversion parameter (which

has the highest certainty equivalent) as κ < 1 decreases than when the equal but opposite

asymmetry in disappointment perception κ > 1 increases.

4.2.2 Approximation accuracy

Next, we assess the accuracy of the approximation by comparing the certainty equivalent

of the proper optimal portfolio, estimated via GMM using the moment condition (9), to

that of the approximated portfolio obtained from the fixed-point solution of equation (19),

which is based on the density approximations in (12). Figure 1B illustrates this precision

by plotting the ratio of the certainty equivalent derived from the right-hand side of equation

(19) to that of the optimal portfolio without approximation. Across all investment horizons,

this ratio remains consistently close to 100%, except for the daily horizon and a few cases

where ℓ is sufficiently large (i.e., between 2.2 and 3) and κ < 1. Even in these instances,

the approximation remains highly precise, with an accuracy exceeding 98%. Therefore,

we can conclude that both the density approximations in Equation (12) and the portfolio
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decomposition in Equation (19) are highly accurate. All certainty equivalent values reported

in Table 2 further illustrate and confirm this conclusion.

4.2.3 Certainty equivalent cost of ignoring downside risk aversion

Finally, we evaluate the accuracy of approximating the GDA investor’s optimal certainty

equivalent using that of the standard mean-variance (MV) portfolio,
1

γ̃e
τ

wMV, where γ̃e
τ is

the effective risk aversion (see Section 2.2, equation (18)). The difference in certainty equiv-

alents between the two portfolios quantifies the cost of ignoring disappointment aversion,

representing the additional premium the GDA investor demands to compensate for down-

side risk aversion. It highlights the extent to which the MV portfolio is suboptimal due to its

inability to account for asymmetric risk perception, particularly concerning downside losses.

Figure 1B shows the ratio of MV investor’s certainty equivalent to that of the GDA

investor, indicating how well the MV portfolio captures the preferences of a disappointment-

averse investor. Although the MV framework does not explicitly model disappointment

aversion, it aligns partially with the GDA investor’s utility through standard risk-return

trade-offs. The remaining gap quantifies the shortfall resulting from the MV investor’s

inability to hedge the risk of disappointment.

Regardless of κ, at ℓ = 0, the GDA preferences reduce to the EU preferences, thus

almost MV, making the certainty equivalents identical and the ratio 100%. For κ = 1, the

ratio follows a U-shape for 0 ≤ ℓ ≤ ℓ∗. At ℓ∗, where the DA investor abstains from risky

asset markets, both certainty equivalents equal the risk-free rate, maintaining a 100% ratio.4

Given that the ratio is 100% at both ℓ = 0 and ℓ∗, Rolle’s theorem implies a local minimum.

Numerically, we observe this minimum across all investment horizons. Although it decreases

as the horizon increases, it remains at 93% at the 20-day horizon, meaning up to 7% of the

certainty equivalent remains unaccounted for. This highlights that while the MV portfolio

captures much of the DA investor’s preferences, it fails to hedge downside risk effectively,

particularly in relatively short horizons considered here, where the missing 7% represents a

significant cost of ignoring disappointment aversion.

The MV portfolio is even less effective for GDA investors with κ ̸= 1 as ℓ increases. At

the 20-day horizon, for ℓ ≥ 1.5, the ratio drops below 90% for κ > 1 and below 86% for

4This also holds for ℓ > ℓ∗.
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κ < 1. The remaining 14% or more in the latter case reflects the premium for downside risk

hedging—the cost the GDA investor is willing to pay (or the loss she incurs) due to the MV

portfolio’s inability to address her asymmetric perception of risk.

4.3 Optimal portfolio weights

We now discuss the optimal portfolio weights and examine how these weights vary with the

GDA preference parameters and the investment horizon. Actual values are estimated via

GMM using the moment condition (9), and approximated values are solved through the

non-linear fixed-point equation (19), based on the density approximations in (12). Finally,

we compare the certainty equivalent of the optimal portfolio of the GDA investor with that

of the optimal portfolio of the MV investor (calibrated to the same endogenous risk aversion,

γ̃τ ).

Table 2 presents the estimated optimal portfolio weights and corresponding certainty

equivalent values for different investment horizons (τ ∈ {1, 5, 10, 20}) and combinations of

GDA preference parameters: risk aversion γ = 3, disappointment aversion ℓ ∈ {0, 1, 2, 3}
and relative disappointment threshold κ ∈ {0.95, 0.975, 1, 1.025, 1.05}. All portfolio weights

and certainty equivalent values are reported in percentage terms.

We begin by analyzing the results for the daily investment horizon (τ = 1), which serve

as a reference since they are qualitatively representative of the findings across longer hori-

zons, all else equal. We then explore how the investment horizon affects optimal portfolio

allocations and the certainty equivalents under GDA preferences.

4.3.1 Daily investment horizon

We first focus on the daily investment horizon and analyze the expected utility preferences

(ℓ = 0). The optimal weights obtained without the approximation (column (N)) suggest

that the EU investor borrows heavily in cash (−288.57% weight in the optimal portfolio) to

invest substantially in bonds (275.21%) and stocks (100.08%). For the EU investor, only the

first term on the right-hand side of equation (19) is relevant, namely the MV term, as all

remaining terms are null. Acting as a standard MV investor, as discussed in Section 2.2, the

EU investor seeks to maximize the Sharpe ratio. Consequently, she maintains substantial

long positions in the assets with the highest Sharpe ratios in our sample (BD and SK).
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Furthermore, given the negative correlation between BD and SK, long positions in both

assets diversify risk and further enhance the Sharpe ratio. To further diversify, the EU

investor moderately buys commodities (23.41%) and short-sells real estate (−10.13%). The

short position in real estate is compatible with its strong positive correlation with stocks,

which meets diversification requirements.

Interestingly, we observe that the approximated analytical solution (column (Y)), the

left-hand side of equation (19), yields portfolio weights very close to the exact numerical

solution. Furthermore, the certainty equivalent achieved is identical, equal to 15.66%. This

confirms the accuracy of the approximation.

We now look at the optimal allocation of the investor with disappointment aversion

(κ = 1). All values of ℓ reported in the table are higher than the threshold ℓ∗ ≈ 0.10, from

which there is no participation in risky asset markets when the investment horizon is one

day. Therefore, the investor prefers safety, optimally holding no risky assets, thus investing

all her wealth in cash. The annualized certainty equivalent in this case corresponds to the

risk-free rate of 2.72%.

We observe in Figure 1A that the certainty equivalent for the EU investor is higher than

for any GDA investor, all else equal. This reflects the greater effective risk tolerance of the

EU investor. Figure 2A illustrates this effective risk tolerance, showing that all κ curves

initially intersect at ℓ = 0, corresponding to the expected utility with a risk tolerance of 1/3,

before decreasing for GDA investors as ℓ increases. This reduction in risk tolerance must

be reflected in portfolio allocations. Table 2 confirms that the EU investor holds the most

significant long positions in stock, commodity, and bond compared to any GDA investor.

Next, we examine cases where the disappointment threshold deviates from the certainty

equivalent, i.e., κ is lower than or higher than one. Figure 1A shows that the certainty

equivalent for κ = 0.975 is lower than for κ = 0.95, indicating that the former GDA investor

is more risk-averse than the latter. This increased risk aversion is also evident in Figure 2A,

where the effective risk tolerance curve for κ = 0.975 is below κ = 0.95 as ℓ increases.

This pattern is reflected in the portfolio allocations in Table 2. Consider the case with

ℓ = 2. For a GDA investor with κ = 0.975 - where disappointment sets in if the result is

at least 2.5% worse than the certainty equivalent - the portfolio weights obtained without

approximation are 45.65% in stock, 6.38% in commodity, 123.99% in bond and −10.13% in

real estate, resulting in an overall long position of 165.89%. In contrast, for a GDA investor
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with κ = 0.95 - where disappointment occurs if the outcome is at least 5% worse than the

certainty equivalent - these allocations increase in magnitude to 74.94% in stock, 16.25% in

commodity, 202.99% in bonds and −17.47% in real estate, leading to a total long position

of 276.71%.

Similarly, Figure 1A shows that the certainty equivalent of κ = 1.025 is lower than for

κ = 1.05, indicating that the former GDA investor is more risk averse than the latter. This

trend is further confirmed by the effective risk tolerance curves in Figure 2A, where the curve

for κ = 1.025 is consistently lower than that for κ = 1.05. The impact of this difference in

risk tolerance is also reflected in the portfolio allocations presented in Table 2.

Focusing again on the case with ℓ = 2, a GDA investor with κ = 1.025 - where disap-

pointment occurs unless the outcome is at least 2.5% better than the equivalent certainty

- holds an overall risky asset position of 244.33%. In contrast, for a GDA investor with

κ = 1.05—where disappointment occurs unless the outcome is at least 5% better than the

equivalent certainty—this position increases to 343.40%, reflecting the investor’s higher risk

tolerance.

4.3.2 MV versus GDA allocation and hedging component

We now examine how the allocation
1

γ̃τ
wMV—the first term on the right-hand side of Equa-

tion (22)—compares with the optimal allocation of the GDA investor. This term represents

the optimal allocation of an MV investor with risk aversion γ̃τ , equivalent to the endogenous

risk aversion. Naturally, this allocation is suboptimal for the GDA investor, leading to a

lower certainty equivalent. The difference between the two allocations, given by
1

γ̃τ
wGDA,

constitutes the GDA investor’s hedging component (see equation (22)).

The allocation
1

γ̃τ
wMV also corresponds to αMVw̄MV, while the allocation

1

γ̃τ
wGDA cor-

responds to αGDAw̄GDA (see Equations (23) and (24)). Table 3 presents the normalized

MV and GDA funds alongside their respective weights in the optimal portfolio, as well as

the relative downside variance of the assets
σ2
iD,τ − σ2

i,t

σ2
i,t

, all expressed in percentage terms.

Across all scenarios in Table 3, the sum of weights in the normalized MV fund is con-

sistently 100%, while it is −100% for the normalized GDA fund, with both funds carrying

positive weights in the optimal portfolio. This implies that the GDA investor takes a long
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position in the common normalized MV fund while shorting through her specific normalized

GDA fund. Consequently, the net exposure to risky assets is given by αMV − αGDA. This

position remains long in all scenarios.

By investing in her specificGDA fund, the GDA investor effectively reduces risk exposure

from the typical MV fund, reinforcing the interpretation of the GDA fund as a hedging

mechanism. Longing the commonMV fund (the first term on the right-hand side of Equation

(24)) appears excessively risky to the GDA investor, who must therefore short her specific

GDA fund (the second term in Equation (24)) to achieve an optimal portfolio with a risk

level aligned with her preferences.

This adjustment quantifies how incorporating downside risk hedging mitigates risk ex-

posure, ultimately transforming a riskier allocation into an optimal portfolio tailored to the

GDA investor’s preferences. It highlights the crucial role of endogenous downside risk hedg-

ing in portfolio selection under GDA preferences, illustrating how deviations from traditional

mean-variance strategies address asymmetries in risk perception.

The certainty equivalent of exclusively longing the common MV fund is reported in

Table 2. For τ = 1, consider the case where ℓ = 2 and examine a GDA investor with

κ = 0.975. If she invests exclusively in the common MV fund, her certainty equivalent is

−19.07%, indicating that this strategy is perilous from her point of view. As a result, she

would effectively pay an implicit insurance premium to avoid such an allocation since her

optimal portfolio achieves a certainty equivalent of 9.97%.

In contrast, a GDA investor with κ = 0.95 (respectively, κ = 1.025 and κ = 1.05) values

the common MV fund more favorably, as she is willing to accept a certainty equivalent of

8.89% (respectively, 6.42% and 14.40%) for this strategy. However, this allocation remains

suboptimal, requiring an adjustment through her specific hedging fund to achieve the cer-

tainty equivalent of 13.31% (respectively, 12.07% and 14.76%) associated with her optimal

portfolio.

4.3.3 Fund weights and implications for effective risk aversion

Table 3 shows that the weight assigned to the MV fund remains relatively stable in different

combinations of preference parameters. For example, at τ = 1, αMV varies narrowly between

386.87% and 390.18%. This consistency reflects the limited variation in the endogenous risk

aversion parameter γ̃τ between scenarios (see equation (25)), as further illustrated in Figure
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2B, which plots the corresponding endogenous risk tolerance 1/γ̃τ .

In contrast, the weight assigned to the GDA fund, αGDA, varies significantly, especially

concerning the disappointment threshold parameter κ. Specifically, αGDA is largest when

κ is near one and decreases as κ moves away from one in either direction. Focusing on the

case ℓ = 2, αGDA equals 227.46% for κ = 0.975 and 145.10% for κ = 1.025, but drops to

116.09% for κ = 0.95 and 44.15% for κ = 1.05.

An increase in αGDA relative to αMV reduces the net exposure to risky assets, given by

αMV −αGDA, thus signaling a higher effective risk aversion. This trend is further confirmed

in Panel C of Figure 2, which plots the ratio αGDA/αMV between preference configurations.

The curves for κ = 0.975 and κ = 1.025 consistently lie above those for κ = 0.95 and

κ = 1.05, respectively, confirming that GDA investors with κ closer to one exhibit lower

risk tolerance than those with more extreme values of κ. The ratio is highest for κ = 1, all

else equal. Moreover, αGDA/αMV increases with ℓ, reinforcing its usefulness as a proxy for

effective risk aversion.

As discussed earlier, GDA investors with κ = 0.975 (resp. κ = 0.95) and κ = 1.025

(resp. κ = 1.05) exhibit equal but opposite asymmetry in the perception of disappointment.

Examining their reliance on the GDA fund to achieve optimality reveals that investors with

κ < 1, due to their aversion to downside losses, reduce their exposure to risky assets more

substantially than their counterparts with κ > 1, who are motivated by a desire for upside

gains. This asymmetry is reflected in Figure 2C, where the κ < 1 curves are consistently

above their counterparts with κ > 1.

Further insight into this differential behavior is provided by examining the relative down-

side variance (RDV) values of the risky assets reported in Table 3. The RDV values indicate

that optimal portfolios for GDA investors with κ < 1 typically exhibit significant and positive

RDV, whereas those for κ > 1 exhibit negative RDV values that are smaller in magnitude.

These findings support a long-standing observation in economics: aversion to downside losses

exerts a more substantial influence on behavior than the desire to capture upside gains.

4.3.4 Effect of investment horizon τ

Having discussed the daily investment horizon results as a benchmark, we now explore how

optimal portfolio weights and overall risk tolerance evolve as the investment horizon increases.

Starting with the EU investor in Table 2, some clear patterns emerge as τ increases. In
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particular, the long position in stock increases from 100.08% at τ = 1 to 129.01% at τ = 20,

while the short position in real estate increases from −10.13% to −40.39%. In contrast,

allocations to other assets, particularly bonds, which consistently receive the highest weight,

do not follow a monotonic trend.

This irregularity results in relatively stable certainty equivalents, ranging from 15.41% at

τ = 5 to 16.10% at τ = 20, a spread of only 0.68%. This is the narrowest variation observed

across all preference configurations, indicating that the EU investor’s overall exposure to

risky assets remains constant across investment horizons. This pattern is confirmed by the

stability of the αMV values in Table 3.

In contrast, for all GDA investors in Table 2, allocations to stocks and bonds—the two

dominant assets—decline monotonically as the investment horizon increases, driving a similar

downward trend in the certainty equivalent. For instance, with ℓ = 2 and κ = 0.975, the

stock (bond) allocation falls from 45.65% (123.99%) at τ = 1, yielding a certainty equivalent

of 9.97%, to 27.29% (55.30%) at τ = 20, where the certainty equivalent drops to 6.17%. This

corresponds to a certainty equivalent spread of −3.80%.

At first glance, this decline in risk-taking with the horizon may seem counterintuitive.

The finance literature typically asserts that longer horizons promote higher risk tolerance.

This view stems from standard expected utility models with mean-reverting returns, where

the variance of cumulative returns increases less rapidly than the mean, making long-horizon

investments more attractive (see, e.g., Cochrane; 2007 and references therein). It also aligns

with widespread advice from professionals (e.g., Bogle; 1999; Malkiel; 1996). However, our

findings show that this logic breaks down for investors with generalized disappointment

aversion preferences. For these agents, longer horizons increase the psychological salience of

disappointment, leading to more conservative portfolio allocations, even when more time is

available to absorb risk.

To understand this mechanism, consider GDA investors with κ < 1, who focus on min-

imizing downside losses. The top two panels in Figure 3A plot the probability of disap-

pointment πD,τ as a function of the penalty coefficient ℓ ∈ [0, 3] for investment horizons

τ ∈ {1, 5, 10, 20}. As ℓ increases, investors assign more weight to disappointment and reduce

its likelihood, causing πD,τ to decline. However, as τ increases, πD,τ increases for fixed ℓ since

the probability of experiencing a downside loss increases with the horizon. This is evident

as the curve for τ = 20 lies above those for shorter horizons.
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A higher probability of disappointment implies a greater effective risk aversion. Conse-

quently, the two top panels of Figure 3C show that risk tolerance decreases with the horizon

when κ < 1, with the curve τ = 20 consistently below the others.

Now consider GDA investors with κ > 1, who focus on achieving upside gains. The two

bottom panels in Figure 3B display the expected excess return conditional on no disappoint-

ment as a function of ℓ for various horizons. These investors are motivated by the size of the

potential gains. However, due to the effects of averaging and the reduced impact of rare pos-

itive shocks on longer horizons, the expected upside gain decreases as τ increases. Therefore,

achieving a considerable gain in one day requires more risk-taking than achieving the same

gain over twenty days, making short-horizon GDA investors with κ > 1 more risk-tolerant

than their long-horizon counterparts. This trend is confirmed in the corresponding panels of

Figure 3C.

These findings resonate with the well-known Allais paradox, which distinguishes between

behavior under a downward and upward focus. When disappointment arises from losses

(κ < 1), investors prioritize minimizing the probability of unfavorable outcomes. When

disappointment comes from insufficient gains (κ > 1), they focus on maximizing the size of

positive outcomes. In both cases, longer horizons either raise the likelihood of disappointment

or reduce the perceived size of the potential upside, leading to more conservative portfolio

behavior.

4.3.5 Additional horizon effects

To complete our analysis, we turn to horizon effects under the canonical disappointment

aversion (DA) model of Gul (1991), where the disappointment threshold coincides with

the certainty equivalent (κ = 1). Previous sections focused exclusively on the generalized

disappointment aversion (GDA) framework of Routledge and Zin (2010), which allows the

threshold to deviate from the certainty equivalent and predicts declining risk-taking with

horizon—opposite to standard theory. Panel A1 of Figure 4 reveals that, unlike GDA, DA

preferences generate a mildly increasing risk tolerance with the investment horizon. When

disappointment aversion is low, the certainty equivalent increases monotonically with the

horizon. Thus, the decline in risk-taking at short horizons is a specific implication of GDA,

not a general feature of disappointment-based preferences.

We extend our analysis beyond short horizons to examine behavior over several months, as
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typically studied in the portfolio choice literature. While our exact solution (Equation (9))

remains valid at any horizon, the fixed-point approximation (Equation (19)) depends on

the quality of the density approximations in Equation (12), which may deteriorate with the

horizon. To evaluate this, we fix preference parameters at γ = 3 and ℓ = 2 and study how key

quantities evolve with the investment horizon τ . Panel A2 of Figure 4 plots the approximate

to exact certainty equivalent ratio as a function of τ , showing that the approximation remains

accurate—within 2% error—for horizons up to 14 months. The associated mean-variance

structure is thus reliable at sufficiently short horizons, which remains the empirical focus of

this paper.

Panel A3 of Figure 4 plots the certainty equivalent across horizons, revealing a U-shaped

risk profile: risk-taking initially declines with the horizon but begins to rise again once the

horizon becomes sufficiently long. We have already provided a behavioral explanation for

the short-horizon decline: The psychological characteristics embedded in GDA preferences

dominate, leading to more cautious portfolio allocations at these horizons. However, the

statistical properties of asset returns become more favorable as the horizon extends. The

distributional improvements eventually outweigh behavioral frictions, restoring the classical

risk-horizon relationship.

Panels B1 to B3 of Figure 4 illustrate this shift. The annualized Sharpe ratios of bond

and real estate rise sharply with the horizon, while the Sharpe ratio of stock remains broadly

stable. Skewness becomes less negative for stock and real estate and increasingly positive

for commodity. Meanwhile, excess kurtosis—initially significant at short horizons—declines

steadily across all risky assets, approaching zero over longer horizons. Together, these

changes enhance the attractiveness of risk-taking over more extended periods, aligning with

conventional portfolio theory.

Our contribution lies in uncovering the short-horizon implications of GDA preferences.

This setting is largely overlooked in the literature despite its importance in practice, partic-

ularly for risk management, short-dated products, and high-frequency investment mandates.

While long horizons eventually recover standard predictions, our findings highlight how be-

havioral frictions can fundamentally reshape risk-taking behavior at very short horizons.
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5 Conclusion

This paper develops a tractable, model-free framework for portfolio selection under gen-

eralized disappointment aversion and provides an empirically grounded analysis using daily

data across major asset classes. Despite kinked and asymmetric preferences, we demonstrate

that optimal portfolios can be represented endogenously in terms of mean and variance with

preference-adjusted moments and effective risk aversion. This structure enables a closed-form

decomposition into standard and downside-specific components, providing new insights into

how psychological frictions influence asset demand.

Empirically, we document a robust and novel horizon-risk pattern: under GDA prefer-

ences, investors reduce risk exposure as the investment horizon extends from one day to

approximately one month. This behavior contradicts classical predictions and reflects the

heightened salience of downside risk at short horizons. As the horizon expands, statisti-

cal improvements in return distributions gradually offset behavioral frictions, resulting in a

U-shaped risk profile.

While our primary focus is on portfolio allocation, the endogenous mean-variance struc-

ture also yields a behavioral performance measure—the endogenous Sharpe ratio, which

adjusts for investor-specific downside risk. This metric, explored in the online appendix,

naturally connects to existing measures such as the Sortino and Conditional Sharpe ratios,

offering a preference-sensitive lens on portfolio efficiency. Future work may extend this frame-

work to fund evaluation, benchmarking, and risk reporting under nonstandard preferences.
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APPENDIX

A First-order conditions for utility maximization

The goal of the investor is to choose the portfolio strategy w that maximizes the certainty

equivalent Cτ = C
(
Rw,τ

)
. Taking the derivative of both sides of equation (8) with respect

to w, we obtain

ηU ′ (Cτ )
∂Cτ
∂w

= E
[
U ′ (Rw,τ

) ∂Rw,τ

∂w

]
−ℓE

[(
U ′ (κCτ )κ

∂Cτ
∂w

− U ′ (Rw,τ

) ∂Rw,τ

∂w

)
I
(
Rw,τ < κCτ

)]
,

where U ′ is the first-order derivative of U given by U ′ (x) = x−γ, and where
∂Rw,τ

∂w
=

Rτ − 1R0,τ . At the optimum we must have
∂Cτ
∂w

= 0. Substituting everything in the above

equation leads to the following equation for the optimal portfolio

E
[
R−γ

w,τ

(
1 + ℓI

(
Rw,τ < κCτ

)) (
Rτ − 1R0,τ

)]
= 0 (A1)

where Cτ is implicitly given by equation (8).

B Effective mean-variance interpretation.

We want to find the effective risk aversion, γ̃e
τ such that :

µw,τ −
γ̃e
τ

2
σ2
w,τ ≡ µ̃w,τ −

γ̃τ
2
σ̃2
w,τ

=
1

γ̃τ
µ̃⊤
τ Σ̃

−1
τ µ̃τ −

γ̃τ
2

1

γ̃τ
µ̃⊤
τ Σ̃

−1
τ Σ̃τ

1

γ̃τ
Σ̃−1

τ µ̃τ

=
1

γ̃τ
µ̃⊤
τ Σ̃

−1
τ µ̃τ −

1

2γ̃τ
µ̃⊤
τ Σ̃

−1
τ µ̃τ

=
1

2γ̃τ
µ̃⊤
τ Σ̃

−1
τ µ̃τ

(B1)
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The left hand of equation (B1) can also be expressed as follows:

µw,τ −
γ̃e
τ

2
σ2
w,τ =

1

γ̃τ
µ̃⊤
τ Σ̃

−1
τ µτ −

γ̃e
τ

2

1

γ̃τ
µ̃⊤
τ Σ̃

−1
τ Στ

1

γ̃τ
Σ̃−1

τ µ̃τ

=
1

γ̃τ

(
µ̃⊤
τ Σ̃

−1
τ µτ −

γ̃e
τ

2γ̃τ
µ̃⊤
τ Σ̃

−1
τ Στ Σ̃

−1
τ µ̃τ

) (B2)

Equalizing (B1) and (B2), we obtain:

γ̃e
τ

2γ̃τ
µ̃⊤
τ Σ̃

−1
τ Στ Σ̃

−1
τ µ̃τ =

(
µ̃⊤
τ Σ̃

−1
τ µτ −

1

2
µ̃⊤
τ Σ̃

−1
τ µ̃τ

)
(B3)

Therefore,

γ̃e
τ = γ̃τ

(2µτ − µ̃τ )
⊤ Σ̃−1

τ µ̃τ

µ̃⊤
τ Σ̃

−1
τ Στ Σ̃−1

τ µ̃τ

(B4)

C Approximation and portfolio characterization

Recalling Re
τ ≡ Rτ − 1R0,τ as the vector of excess returns on risky assets, and Dτ ≡{

Rw,τ < κCτ
}
as the investor’s disappointing event, the above first-order condition for opti-

mality, (A1), may also be written

E
[
R−γ

w,τR
e
τ

]
+ ℓE

[
R−γ

w,τR
e
τ I (Dτ )

]
= 0

E
[
R−γ

w,τ

] E [R−γ
w,τR

e
τ

]
E
[
R−γ

w,τ

] + ℓE
[
R−γ

w,τ I (Dτ )
] E [R−γ

w,τR
e
τ I (Dτ )

]
E
[
R−γ

w,τ I (Dτ )
] = 0

E
[
R−γ

w,τR
e
τ

]
E
[
R−γ

w,τ

] + ℓ
E
[
R−γ

w,τ I (Dτ )
]

E
[
R−γ

w,τ

] E
[
R−γ

w,τR
e
τ I (Dτ )

]
E
[
R−γ

w,τ I (Dτ )
] = 0

or equivalently

E

 R−γ
w,τ

E
[
R−γ

w,τ

]Re
τ

+ ℓπ∗
D,τE

 R−γ
w,τ

E
[
R−γ

w,τ | Dτ

]Re
τ | Dτ

 = 0 (C1)
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with

π∗
D,τ ≡

E
[
R−γ

w,τ I (Dτ )
]

E
[
R−γ

w,τ

] = E

 R−γ
w,τ

E
[
R−γ

w,τ

]I (Dτ )

 = E∗ [I (Dτ )
]
= prob∗ (Dτ ) , (C2)

where E∗ [·] denotes the beliefs-implied expectation operator induced by the change-of-

measure
R−γ

w,τ

E
[
R−γ

w,τ

] , and prob∗ (·) denotes the associated beliefs-implied probability operator.

From equation (C1), we consider the following density approximations:

R−γ
w,τ

E
[
R−γ

w,τ

] ≈ 1−
σ
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]
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Re
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Re
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Re
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E
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]
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]Re
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Re
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]
σ
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Re
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Re
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,

where

γτ =
σ
[
R−γ

w,τ

]
E
[
R−γ

w,τ

] /σ
[
Re

w,τ

]
and γD,τ =

σ
[
R−γ

w,τ | Dτ

]
E
[
R−γ

w,τ | Dτ

] /σ
[
Re

w,τ | Dτ

]
. (C3)

Substituting out the density approximations into equation (C1) and rearranging, we

obtain(
E [Re

τ ]− γτ cov
(
Re

w,τ , R
e
τ

))
+ ℓπ∗

D,τ

(
E
[
Re

τ | Dτ

]
− γD,τ cov

(
Re

w,τ , R
e
τ | Dτ

))
= 0

(µτ − γτΣτw) + ℓπ∗
D,τ

(
µD,τ − γD,τΣD,τw

)
= 0
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D,τγD,τΣD,τ

)−1 (
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D,τµD,τ
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(C4)
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where µτ = E [Re
τ ] and Στ = var [Re

τ ] are respectively the mean vector and the variance-

covariance matrix of risky asset excess returns, and µD,τ = E
[
Re

τ | Dτ

]
and ΣD,τ = var

[
Re

τ | Dτ

]
are respectively the mean vector and the variance-covariance matrix of risky asset excess re-

turns conditional on the disappointing event.

The last equation in (C4) shows that the optimal solution may be written as

w =
1

γ̃τ

((
1− αD,τ

)
Στ + αD,τΣD,τ

)−1 ((
1− λD,τ

)
µτ + λD,τµD,τ

)
=

1

γ̃τ
Σ̃−1

τ µ̃τ

where


Σ̃τ =

(
1− αD,τ

)
Στ + αD,τΣD,τ and µ̃τ =

(
1− λD,τ

)
µτ + λD,τµD,τ

with λD,τ =
ℓπ∗

D,τ

1 + ℓπ∗
D,τ

, γ̃τ =
(
1− λD,τ

)
γτ + λD,τγD,τ and αD,τ =

λD,τγD,τ

γ̃τ
.

(C5)

To obtain the optimal portfolio decomposition into key components, observe that:

Σ̃−1
τ =

((
1− αD,τ

)
Στ + αD,τΣD,τ

)−1

= Σ−1
τ +

[((
1− αD,τ

)
Στ + αD,τΣD,τ

)−1

− Σ−1
τ

]
= Σ−1

τ +

[((
1− αD,τ

)
Στ + αD,τΣD,τ

)−1
{
Στ −

((
1− αD,τ

)
Στ + αD,τΣD,τ

)}
Σ−1

τ

]
= Σ−1

τ − αD,τ

((
1− αD,τ

)
Στ + αD,τΣD,τ

)−1 (
ΣD,τ − Στ

)
Σ−1

τ .

Substituting out into equation (C5), we obtain the following optimal portfolio decomposition:

w =

(
1

γ̃τ
Σ−1

τ µτ

)
+ λD,τ

(
1

γ̃τ
Σ−1

τ

(
µD,τ − µτ

))
− αD,τ

[
Στ + αD,τ

(
ΣD,τ − Στ

)]−1 (
ΣD,τ − Στ

)( 1

γ̃τ
Σ−1

τ µτ

)
− λD,ταD,τ

[
Στ + αD,τ

(
ΣD,τ − Στ

)]−1 (
ΣD,τ − Στ

)( 1

γ̃τ
Σ−1

τ

(
µD,τ − µτ

))
.

(C6)
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Table 1: Summary statistics of asset excess returns

τ = 1 τ = 5 τ = 10 τ = 20

RF SK CY BD RE RF SK CY BD RE RF SK CY BD RE RF SK CY BD RE

Mean 0.007 0.029 0.013 0.013 0.023 0.037 0.139 0.063 0.066 0.102 0.075 0.270 0.123 0.132 0.195 0.149 0.534 0.259 0.265 0.388
Std 1.123 1.348 0.446 1.490 2.311 2.995 0.987 2.983 3.112 4.199 1.366 4.012 4.332 6.105 1.987 5.650

Ratio 0.026 0.009 0.030 0.015 0.060 0.021 0.067 0.034 0.087 0.029 0.096 0.049 0.123 0.042 0.134 0.069

Skew −0.209 −0.498 −0.095 0.243 −0.526 −0.348 −0.075 0.030 −0.794 −0.495 0.057 −0.762 −0.812 −0.434 0.201 −0.660
XKurt 11.018 7.585 3.058 27.565 6.035 3.714 1.308 15.853 5.643 3.100 1.475 9.670 4.982 2.698 1.625 7.862

Min −11.985 −16.850 −2.804 −18.679 −18.349 −20.115 −4.272 −31.362 −25.887 −32.885 −5.497 −33.705 −30.981 −38.461 −6.768 −42.711
Q05 −1.718 −2.123 −0.710 −1.849 −3.625 −4.770 −1.550 −4.310 −4.871 −6.664 −2.117 −6.071 −6.752 −9.745 −3.024 −8.167
Q50 0.021 0.000 0.009 0.002 0.274 0.117 0.099 0.207 0.519 0.306 0.175 0.413 0.955 0.518 0.321 0.850
Q95 1.623 2.106 0.699 1.773 3.502 4.548 1.609 4.001 4.726 6.472 2.217 5.390 6.648 9.682 3.233 7.698
Max 11.579 7.909 4.133 18.715 17.973 20.031 5.810 38.822 21.632 26.394 8.526 30.031 26.174 31.920 11.486 40.567

Correlations Correlations Correlations Correlations

CY 0.188 0.230 0.228 0.206
BD −0.193 −0.164 −0.134 −0.177 −0.129 −0.212 −0.123 −0.265
RE 0.662 0.125 −0.104 0.663 0.149 −0.024 0.656 0.145 0.026 0.668 0.132 0.051

Note: The top panel of the table presents, for different investment horizons (τ in days), sample values of the mean (Mean), standard
deviation (Std), Sharpe ratio (Ratio), skewness (Skew), excess kurtosis (XKurt), minimum (Min), fifth percentile (Q05), fiftieth
percentile (Q50), ninety-fifth percentile (Q95), and maximun (Max) for the risk-free rate (RF) and individual risky asset excess
returns (SK for stock, CY for commodity, BD for bond, and RE for real estate). The bottom panel presents excess returns
correlations. The mean, standard deviation, minimum, percentiles, and maximum are in percentage units. The data are daily, and
the sample period is from January 2, 1989 to October 31, 2022.
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Table 2: Optimal portfolio weights and certainty equivalent

γ [ℓ] 3[0] 3[1] 3[2] 3[3]

κ 0.95 0.95 1 1.05 1.05 0.95 0.95 0.975 0.975 1 1.025 1.025 1.05 1.05 0.95 0.95 1 1.05 1.05

(N) (Y) (N) (Y) (N) (N) (Y) (N) (Y) (N) (Y) (N) (N) (Y) (N) (Y) (N) (Y) (N) (N) (Y)

τ
=

1

SK 100.08 99.17 82.73 82.39 0.00 88.64 88.11 74.94 74.44 45.65 45.77 0.00 58.21 58.01 86.22 85.66 72.69 72.48 0.00 85.54 84.98
CY 23.41 23.60 18.54 18.65 0.00 21.55 21.53 16.25 16.51 6.38 6.44 0.00 16.07 16.11 21.52 21.59 16.21 16.26 0.00 20.75 20.84
BD 275.21 274.54 224.79 226.24 0.00 251.66 252.15 202.99 202.47 123.99 123.74 0.00 179.17 178.74 247.60 247.00 182.40 183.11 0.00 244.87 244.40
RE −10.13 −9.58 −14.92 −14.84 0.00 −11.35 −10.88 −17.47 −17.13 −10.13 −10.25 0.00 −9.12 −9.04 −11.94 −11.39 −16.48 −17.75 0.00 −11.85 −11.36
Cτ 15.66 15.66 14.01 14.01 2.72 14.93 14.93 13.31 13.31 9.97 9.97 2.72 12.07 12.07 14.76 14.76 12.90 12.89 2.72 14.68 14.68
C ′
τ 15.66 15.66 14.01 12.23 14.93 14.71 13.26 8.89 9.96 −19.07 12.06 6.42 14.76 14.40 12.74 5.66 14.68 14.24

τ
=

5

SK 110.54 108.37 66.24 66.24 0.00 80.91 80.74 57.42 56.62 32.25 32.40 0.00 46.37 46.26 76.27 75.99 51.42 51.42 0.00 74.09 73.99
CY 20.22 20.98 9.46 9.46 0.00 18.13 18.33 5.02 4.91 3.85 4.08 0.00 12.41 12.40 17.50 17.68 2.40 2.40 0.00 17.72 17.77
BD 264.74 259.79 157.00 157.00 0.00 203.60 202.65 135.30 134.95 78.26 77.72 0.00 120.32 120.14 193.76 192.66 128.72 128.72 0.00 189.83 188.30
RE −21.79 −20.13 −16.74 −16.74 0.00 −15.37 −14.72 −17.47 −16.84 −9.10 −9.18 0.00 −6.90 −6.74 −14.64 −13.95 −16.81 −16.81 0.00 −14.03 −13.65
Cτ 15.41 15.41 11.41 11.41 2.72 13.46 13.46 10.45 10.45 7.40 7.40 2.72 9.78 9.78 13.12 13.12 9.96 9.96 2.72 12.98 12.98
C ′
τ 15.41 15.41 11.41 3.60 13.46 12.08 10.44 −6.33 7.40 −29.67 9.78 −3.84 13.12 10.94 9.95 −14.57 12.98 10.38

τ
=

10

SK 124.53 118.62 64.37 64.04 0.00 81.32 80.20 55.73 55.61 31.41 31.63 0.00 45.59 45.60 73.67 73.41 52.69 52.49 0.00 70.92 70.49
CY 22.21 23.81 10.79 11.23 0.00 19.06 19.60 7.41 7.31 4.65 4.52 0.00 11.91 12.01 18.88 19.25 4.40 4.57 0.00 18.70 19.03
BD 281.72 269.65 145.00 144.88 0.00 195.39 192.29 120.74 120.04 68.64 68.24 0.00 112.57 112.01 182.56 180.46 111.78 111.81 0.00 177.51 175.17
RE −34.41 −28.70 −21.14 −20.55 0.00 −18.92 −17.25 −21.76 −21.58 −11.32 −11.45 0.00 −8.36 −8.14 −16.37 −15.29 −22.98 −22.77 0.00 −15.48 −14.53
Cτ 16.09 16.05 10.90 10.90 2.72 13.02 13.02 9.91 9.91 6.92 6.92 2.72 9.11 9.11 12.53 12.53 9.49 9.49 2.72 12.33 12.32
C ′
τ 16.05 16.05 10.90 0.29 13.02 10.74 9.91 −11.54 6.92 −27.67 9.11 −6.59 12.53 8.87 9.49 −20.55 12.32 7.91

τ
=

20

SK 129.01 121.22 59.03 58.82 0.22 78.48 77.71 47.93 47.86 27.29 27.34 0.01 43.26 43.13 69.56 68.88 44.45 44.42 0.00 65.60 65.51
CY 27.81 29.16 12.60 12.80 0.05 19.85 20.19 7.92 7.90 5.07 5.07 0.00 11.77 11.95 18.81 19.04 5.96 6.01 0.00 18.57 18.70
BD 274.61 260.47 123.72 123.49 0.52 174.79 172.16 95.95 95.85 55.30 55.31 0.03 98.29 97.99 158.28 156.66 84.18 84.32 0.00 151.28 150.53
RE −40.39 −34.02 −20.96 −20.75 −0.08 −20.61 −19.43 −17.99 −17.89 −10.42 −10.47 −0.01 −9.09 −8.87 −17.45 −16.68 −16.47 −16.40 0.00 −16.45 −16.14
Cτ 16.15 16.10 9.83 9.83 2.71 12.15 12.15 8.77 8.77 6.17 6.17 2.71 8.29 8.29 11.54 11.54 8.32 8.32 2.72 11.30 11.30
C ′
τ 16.10 16.10 9.83 −0.92 12.15 9.08 8.77 −12.67 6.17 −22.52 8.29 −6.71 11.54 6.39 8.31 −21.18 11.30 4.96

Note: For different investment horizons (τ ∈ {1, 5, 10, 20} in days) and for different combinations of preference parameters (γ = 3,
ℓ ∈ {0, 1, 2, 3}, κ ∈ {0.95, 0.975, 1, 1.025, 1.05}), the table displays estimates of the optimal portfolio weights (w) in individual risky
assets (SK for stock, CY for commodity, BD for bond, and RE for real estate), and the associated certainty equivalent, Cτ , without
the approximation (N) and with the approximation (Y). The cell C′

τ (N) is the certainty equivalent of the right-hand side of equation
(19), while C′

τ (Y) corresponds to the certainty equivalent of the standard MV portfolio with equal endogenous risk aversion. The
asset menu comprises the risk-free rate and four indices including stock, commodity, bond, and real estate. The data are daily, and
the sample period is from January 2, 1989 to October 31, 2022.
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Table 3: Optimal portfolio decomposition

γ [ℓ] 3[0] 3[1] 3[2] 3[3]

κ 0.95 1.05 0.95 0.975 1.025 1.05 0.95 1.05

w̄ MV (RDV) GDA (RDV) GDA (RDV) GDA (RDV) GDA (RDV) GDA (RDV) GDA (RDV) GDA (RDV) GDA

τ
=

1

SK 25.58 528.96 −22.29 −4.97 −30.31 666.02 −22.74 478.47 −24.14 −8.39 −28.43 −4.76 −30.24 317.73 −17.16 −4.42 −29.10
CY 6.09 424.09 −6.52 −0.70 −5.01 534.33 −6.51 390.01 −7.68 −1.44 −5.31 −0.65 −4.40 783.56 −5.70 −0.62 −5.63
BD 70.81 442.82 −64.58 −2.18 −61.00 673.95 −63.29 257.31 −68.08 −4.82 −66.13 −2.11 −61.13 157.02 −70.69 −2.11 −61.53
RE −2.47 750.12 −6.61 −4.38 −3.68 889.87 −7.46 1,361.97 −0.09 −7.18 −0.13 −4.29 −4.23 593.29 −6.44 −4.04 −3.74
1⊤w̄ 100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00
α 387.72 389.24 76.43 387.11 35.93 389.85 116.09 391.05 227.46 388.02 145.10 386.94 44.15 390.18 124.40 386.87 48.00

τ
=

5

SK 29.37 303.61 −27.66 −8.30 −33.59 366.13 −27.50 299.94 −28.68 −10.08 −31.51 −7.77 −33.38 368.52 −28.92 −7.55 −33.42
CY 5.68 351.21 −7.25 −1.74 −3.26 473.00 −7.86 343.79 −6.44 −2.23 −4.29 −1.58 −3.53 375.94 −8.80 −1.44 −3.18
BD 70.40 48.00 −67.61 −6.41 −69.76 45.88 −66.85 28.39 −69.05 −9.24 −71.01 −5.88 −69.46 36.57 −64.72 −5.76 −69.70
RE −5.45 463.82 2.52 −6.90 6.61 528.50 2.21 465.71 4.16 −8.42 6.82 −6.92 6.37 694.90 2.45 −6.92 6.29
1⊤w̄ 100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00
α 369.02 379.57 163.31 371.04 83.88 381.77 200.75 384.16 279.28 376.69 204.17 371.29 98.94 382.71 218.11 371.32 104.90

τ
=

10

SK 30.94 201.11 −29.83 −9.84 −35.20 310.91 −28.79 224.42 −30.03 −10.45 −32.79 −9.28 −35.80 407.00 −28.18 −9.12 −36.00
CY 6.21 192.01 −6.77 −0.74 −3.97 282.83 −7.23 218.83 −6.50 −1.29 −5.39 −0.80 −3.72 365.87 −7.92 −0.86 −3.61
BZ 70.33 −1.06 −68.15 −9.39 −71.22 −3.85 −67.87 −12.04 −69.69 −10.77 −71.02 −8.66 −71.03 −2.73 −66.90 −8.39 −70.82
RE −7.49 334.91 4.75 −4.77 10.39 482.29 3.89 370.36 6.22 −5.00 9.20 −4.73 10.55 627.01 2.99 −4.52 10.42
1⊤w̄ 100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00
α 383.38 404.26 204.61 387.94 113.05 407.99 245.92 410.18 316.16 397.46 235.86 388.28 130.37 409.60 263.49 388.48 138.47

τ
=

20

SK 32.17 126.14 −30.99 −12.63 −34.32 170.25 −30.41 132.30 −31.34 −12.71 −33.45 −11.90 −34.95 192.46 −29.85 −11.56 −35.00
CY 7.74 113.46 −8.04 −1.98 −7.16 193.36 −8.59 127.26 −8.09 −1.57 −7.43 −1.83 −6.91 212.50 −8.85 −1.89 −6.67
BD 69.12 11.14 −67.83 −12.84 −69.90 6.54 −68.00 −1.51 −68.65 −13.30 −69.78 −11.88 −69.63 −4.77 −68.31 −11.45 −69.44
RE −9.03 284.60 6.86 −7.43 11.39 383.67 6.99 319.75 8.08 −7.03 10.66 −6.41 11.48 434.31 7.01 −5.99 11.10
1⊤w̄ 100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00 −100.00
α 376.83 406.41 232.10 386.39 135.78 410.57 276.40 414.07 336.60 398.66 254.48 387.66 159.84 411.79 292.88 388.40 169.82

Note: For different investment horizons (τ ∈ {1, 5, 10, 20} in days) and for different combinations of preference parameters (γ = 3,
ℓ ∈ {0, 1, 2, 3}, κ ∈ {0.95, 0.975, 1.025, 1.05}), the table displays estimates of the weights in individual risky assets (SK for stock, CY
for commodity, BD for bond, and RE for real estate) and their sum, for each portfolio component (w̄MV and w̄GDA), as well as the
weight of each component in the optimal portfolio (αMV and αGDA). Estimates of the individual asset relative downside variance in
percentage are provided in columns labeled (RDV), followed by αMV. The asset menu comprises the risk-free rate and four indices
(stock, commodity, bond, and real estate). The data are daily, from January 2, 1989 to October 31, 2022.
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Panel A: True CE Panel B: Approx. CE ratio Panel C: Standard MV CE ratio
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Note: The figure shows estimates of the certainty equivalent (CE) of the optimal portfolio (Cτ ) for
different investment horizons (τ ∈ {1, 5, 10, 20} days) and preference parameters (γ = 3, ℓ ∈ [0, 3],
κ ∈ {0.95, 0.975, 1, 1.025, 1.05}). Panel A presents results without approximation. Panel B shows the ratio
of the CE with vs. without approximation. Panel C compares the standard MV portfolio’s CE to the ap-
proximated version. The asset menu includes a risk-free rate and four indices (stock, commodity, bond, real
estate), with daily data from January 2, 1989, to October 31, 2022.

Figure 1: Certainty Equivalent: Optimality and accuracy of approximations
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A: Effective risk tolerance B: Endogenous risk tolerance C: GDA fund weight ratio
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Note: For different investment horizons (τ ∈ {1, 5, 10, 20} days) and preference parameters (γ = 3, ℓ ∈
[0, 3], κ ∈ {0.95, 0.975, 1, 1.025, 1.05}), Panel A shows the effective risk tolerance 1/γ̃e

τ , Panel B displays the
endogenous risk tolerance 1/γ̃τ , while Panel C plots the ratio αGDA/αMV of the normalized GDA fund
weight to the normalized MV fund weight. The asset menu includes a risk-free rate and four indices (stock,
commodity, bond, real estate), with daily data from January 2, 1989, to October 31, 2022.

Figure 2: Effective risk tolerance in approximate MV portfolio optimization
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A: Disappointment probability B: Conditional expected return C: Effective risk tolerance
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Note: The figure shows, for different investment horizons (τ ∈ {1, 5, 10, 20} days) and preference parameters
(γ = 3, ℓ ∈ [0, 3], κ ∈ {0.95, 0.975, 1.025, 1.05}), estimates of πD,τ (the real-world disappointment probability

for κ < 1) or 1− πD,τ (κ > 1) in Panel A, and estimates of E
[
Re

w,τ | Dτ

]
(downside expected excess return

for κ < 1) or E
[
Re

w,τ |∼ Dτ

]
(κ > 1) in Panel B, where ∼ Dτ is the complement of Dτ . The asset menu

includes a risk-free rate and four indices (stock, commodity, bond, real estate), with daily data from January
2, 1989, to October 31, 2022.

Figure 3: Disappointment probabilities and conditional expected returns
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A1: Symmetric disappointment A2: MV Approximation HS A3: True Certainty Equivalent HS
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B1: Sharpe Ratio HS B2: Skewness HS B3: Kurtosis HS
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Note: Panel A1 plots the certainty equivalent (CE) of the optimal portfolio, computed without approximation, across investment
horizons (τ ∈ {1, 5, 10, 20} days) for GDA preferences with γ = 3, κ = 1, and varying ℓ ∈ [0, 3]. The remaining panels fix γ = 3 and
ℓ = 2 and examine the horizon structure (HS) of key quantities: Panel A2 shows the ratio of CE with vs. without approximation; Panel
A3 shows the CE without approximation; Panel B1 displays Sharpe ratios; Panel B2, skewness; and Panel B3, excess kurtosis—for
both the individual assets and the optimal portfolio. The asset universe consists of a risk-free rate and four asset classes (stock,
commodity, bond, and real estate), using daily data from January 2, 1989, to October 31, 2022.

Figure 4: Additional horizon effects
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INTERNET APPENDIX of “Endogenous Downside Risk

and Asset Allocation”

This supplemental appendix for “Endogenous Downside Risk and Asset Allocation” dis-

cusses asset and portfolio performance measurement motivated by our nonstandard mean-

variance framework to suggest how practitioners can use or implement our setting. It also

provides additional tables and figures that complement the analysis presented in the main

text.
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A Portfolio performance measures

In the article’s main body, we demonstrate that generalized disappointment aversion (GDA)

significantly alters optimal asset allocation, reshapes effective risk aversion, and induces

horizon-dependent investment behavior. These theoretical insights have a direct impact

on portfolio performance, particularly when downside risk is a salient factor. While our

framework is grounded in GDA preferences, it naturally leads to new performance metrics

that extend and reinterpret well-established measures used in practice.

The literature offers numerous criteria to assess a portfolio’s return-risk trade-off, most

of which are designed to reflect investor preferences. Classical measures such as the Sharpe

ratio, Jensen’s alpha, and the Treynor index originate from mean-variance theory and im-

plicitly assume expected utility preferences. In contrast, a growing set of alternative metrics

explicitly incorporate downside risk aversion. These include the gain-loss ratio of Bernardo

and Ledoit (2000)—later popularized as the omega ratio by Keating and Shadwick (2002)—as

well as the Sortino ratio (Sortino and van der Meer; 1991) and the upside potential ratio

introduced by Sortino et al. (1999).

Another example is the Conditional Sharpe Ratio (CSR), which replaces standard devia-

tion with expected shortfall (ES) or conditional value-at-risk (CVaR) to account for tail risk.

Widely used in hedge fund and private equity contexts, CSR is particularly relevant when

protecting against large downside losses and return distributions exhibit significant skewness

or kurtosis.

Our GDA-based framework complements these approaches by providing a formal founda-

tion for performance evaluation under asymmetric, kinked utility. Specifically, equation (14)

shows that the downside expected return of an asset is computed conditional on the investor’s

overall portfolio falling below her disappointment benchmark—a concept closely related to
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the marginal expected shortfall employed in systemic risk analysis (e.g., Acharya et al.;

2013, 2016). As such, disappointment-averse investors endogenously incorporate downside

risks into their portfolio decisions, leading to novel return-risk trade-offs.

In what follows, we introduce an investment performance measure implied by GDA pref-

erences and relate it to existing downside-sensitive metrics. This measure—the endogenous

Sharpe ratio—captures the adjustment of both expected returns and variances to account

for disappointment risk, providing a unified framework for performance evaluation under

behavioral preferences.

We consider the following decomposition of the asset excess returns Re
τ into a downside

(a loss) component Lτ and an upside (a gain) component Gτ :

Re
τ = Gτ − Lτ where Lτ = −Re

τ I (Dτ ) and Gτ = Re
τ

(
1− I (Dτ )

)
, (A.1)

and where Lτ and Gτ represent the downside (loss) and the upside (gain) components of the

excess returns, respectively. Since positive downside (loss) and upside (gain) components

cannot coincide, we observe that (the element-by-element product) Lτ ·Gτ = 0. This upside-

downside (gain-loss) decomposition of asset returns is exploited in an approach to asset

pricing in incomplete markets by Bernardo and Ledoit (2000), where the ratio of the risk-

adjusted expected upside to the risk-adjusted expected downside excess return, called the

gain-loss ratio, summarizes the attractiveness of any zero-cost portfolio. We define:

µ−
D,τ ≡ E [Lτ ] and µ+

D,τ ≡ E [Gτ ] . (A.2)

Using these moments, the standard Sharpe ratio, SRi,τ , and analogues of the omega

ratio, ORi,τ , Sortino ratio, TRi,τ , upside potential ratio, URi,τ , and conditional Sharpe
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ratio, CSRi,τ , given the disappointing event Dτ would be

SRi,τ =
µi,τ

σi,τ

, ORi,τ =
µ+
iD,τ

µ−
iD,τ

, TRi,τ =
µi,τ

σiD,τ

, URi,τ =
µ+
iD,τ

σiD,τ

and CSRi,τ =
µi,τ

−µiD,τ

, (A.3)

where −µiD,τ measures the asset’s marginal expected shortfall, coinciding with the expected

shortfall when the asset is the portfolio itself.

Our GDA-based framework complements existing performance evaluation methods by

offering a theoretical foundation tailored to asymmetric, kinked preferences. We have shown

that disappointment-averse investors endogenously distort return and risk measures, assign-

ing an optimal weight to downside moments. These preference-adjusted moments give rise

to a new class of return-risk metrics that capture both conventional and disappointment-

induced trade-offs. In particular, the endogenous mean-variance interpretation of optimal

portfolio choice (see equation (16)) leads naturally to a new performance measure, which we

refer to as the endogenous Sharpe ratio, S̃Ri,τ , defined as:

S̃Ri,τ =
µ̃i,τ

σ̃i,τ

=
(1− λD,τ )µi,τ + λD,τµiD,τ√
(1− αD,τ )σ2

i,τ + αD,τσ2
iD,τ

, i = w, 1, 2, . . . , n

= SRi,τ ·
(1− λD,τ ) + λD,τ

µiD,τ

µi,τ√
(1− αD,τ ) + αD,τ

σ2
iD,τ

σ2
i,τ

.
(A.4)

Computing S̃Ri,τ requires specification of a downside event D and associated weights:

λD,τ for the downside expected return, and αD,τ for the downside variance. Investor pref-

erences endogenously determine these weights. For instance, Figure A1-A plots λD,τ across

different horizons for selected preference parameters. Similarly, Figure A2-A does the same

for αD,τ . These quantities vary systematically with the horizon: for κ < 1, both weights
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increase modestly with the horizon (typically remaining below 7% at ℓ = 2); for κ > 1, they

are relatively stable (around 65% at ℓ = 2).

In practical settings, the precise values of λD,τ and αD,τ may not be known ex-ante.

Nonetheless, the framework remains operational using ad hoc but reasonable reference values.

Practitioners can select downside events based on scenario analysis—e.g., a common macro or

market shock, such as the GDP, the industrial production index, or the stock index falling

below its first quartile, or portfolio-specific events, such as a drop below the portfolio’s

historical median return. Likewise, reasonable fixed weights—e.g., one-fifth on the downside

expected return and one-fourth on the downside variance—can be used for benchmarking

purposes.

Notably, the ratio αD,τ/λD,τ tends to lie between 1 and 1.2, which means practitioners

may use a single common penalty coefficient on both downside moments without materially

distorting the endogenous Sharpe ratio. This robustness facilitates ease of use in applied

settings. More broadly, because both the disappointing event and the downside penalty can

be flexibly chosen, our framework lends itself naturally to scenario analysis. This flexibil-

ity makes it particularly useful for stress testing, custom benchmarking, and performance

attribution under behavioral preferences prioritizing downside protection.

Equation (A.4) highlights two key inputs: the ratio of downside to standard expected

excess returns and the ratio of downside to standard variances. These ratios adjust the

standard Sharpe ratio to reflect the investor’s aversion to downside risk, yielding the en-

dogenous Sharpe ratio. When the downside expected excess return is relatively low (i.e.,

the ratio is below one) and the downside variance is relatively high (i.e., the ratio exceeds

one), the endogenous Sharpe ratio falls below its standard counterpart. Conversely, a higher

downside-to-standard expected return ratio and a lower downside-to-standard variance ratio
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improve the endogenous Sharpe ratio.

Importantly, the endogenous Sharpe ratio can also be reformulated in terms of widely

used downside-sensitive performance measures:

S̃Ri,τ = SRi,τ ·
(1− λD,τ )− λD,τ/CSRi,τ√

(1− αD,τ ) + αD,τ ·
(
SRi,τ/TRi,τ

)2 , i = w, 1, 2, . . . , n. (A.5)

This expression shows that S̃Ri,τ is a strictly increasing function of the standard Sharpe

ratio, the Conditional Sharpe Ratio (CSR), and the Sortino Ratio (TR), holding all else

constant. It offers a unified framework in which GDA preferences give rise to a performance

measure that embeds—and extends—several familiar risk-adjusted metrics used to evaluate

portfolios under downside risk aversion.

Figure A2-B shows that the annualized standard Sharpe ratio of the optimal portfolio

is nearly invariant across preference configurations for a given investment horizon. It also

rises steadily with the horizon within the short range we study (see Panel B1 of Figure 4 in

the main article), consistent with improvements in risk-return trade-offs driven by statistical

properties of asset returns. In contrast, the endogenous Sharpe ratio of assets and optimal

portfolio—our preference-sensitive measure implemented by GDA—varies significantly be-

tween investors for a given horizon, as shown in Figure A1-B and Figure A1-C. This variation

reflects how investors with different levels of disappointment aversion and asymmetry differ-

entially weigh downside moments in asset and portfolio returns. Notably, the endogenous

Sharpe ratio is consistently lower than its standard counterpart (corresponding to ℓ = 0 on

the graphs in Figure A1-B and Figure A1-C) for all GDA investors, highlighting the psycho-

logical cost of disappointment risk embedded in asset allocation. Naturally, the endogenous

Sharpe ratios of the individual assets are all smaller than that of the optimal portfolios, con-
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sistent with the endogenous mean-variance framework, which is equivalent to maximizing

the endogenous Sharpe ratio when preferences represented by the downside event and the

downside weight are fixed.

This observation aligns with the performance measurement framework proposed by Cogneau

and Hübner (2009a,b), who emphasize the limitations of applying standard risk-adjusted

measures—such as the Sharpe ratio—uniformly across investors with heterogeneous prefer-

ences. In their critical taxonomy of over 100 performance metrics, the authors emphasize

the importance of aligning performance evaluation with investors’ specific risk sensitivities,

particularly in the presence of concerns about downside risk. Our endogenous Sharpe ratio

fits naturally within this class of preference-adjusted indicators. It preserves the intuitive

appeal of the traditional Sharpe ratio while embedding it in a richer behavioral framework

that adjusts inputs endogenously for disappointment aversion. As such, it offers theoretical

consistency and practical relevance, providing a tailored, utility-consistent benchmark for

assessing portfolio efficiency under nonstandard preferences, particularly in short-horizon

investment contexts where psychological frictions are most salient.

B Additional tables and figures
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Table A1: Summary statistics of asset excess returns: Non-overlapping

τ = 1 τ = 5 τ = 10 τ = 20

RF SK CY BD RE RF SK CY BD RE RF SK CY BD RE RF SK CY BD RE

Mean 0.007 0.029 0.013 0.013 0.023 0.037 0.142 0.064 0.066 0.110 0.075 0.277 0.124 0.130 0.195 0.149 0.550 0.256 0.261 0.380
Std 1.123 1.348 0.446 1.490 2.449 3.023 1.010 3.216 3.270 4.218 1.364 4.049 4.500 6.070 1.976 5.488

Ratio 0.026 0.009 0.030 0.015 0.058 0.021 0.065 0.034 0.085 0.029 0.095 0.048 0.122 0.042 0.132 0.069

Skew −0.209 −0.498 −0.095 0.243 −0.171 −0.216 −0.140 0.872 −0.807 −0.637 −0.039 −0.692 −1.132 −0.590 0.165 −0.948
XKurt 11.018 7.585 3.058 27.565 5.323 3.841 1.718 20.992 4.801 2.953 0.838 12.563 5.587 1.769 1.979 7.759

Min −11.985 −16.850 −2.804 −18.679 −13.863 −17.467 −4.218 −22.216 −22.798 −25.127 −4.484 −33.705 −29.461 −30.296 −5.958 −32.873
Q05 −1.718 −2.123 −0.710 −1.849 −3.814 −4.915 −1.581 −4.623 −5.183 −6.476 −2.090 −5.951 −7.489 −9.781 −3.048 −6.935
Q50 0.021 0.000 0.009 0.002 0.247 0.154 0.124 0.191 0.505 0.231 0.187 0.390 0.928 0.216 0.405 0.826
Q95 1.623 2.106 0.699 1.773 3.688 4.577 1.615 3.924 5.011 6.593 2.220 5.379 6.560 9.921 3.268 7.570
Max 11.579 7.909 4.133 18.715 17.397 19.907 5.626 38.822 14.529 14.527 5.347 30.031 15.731 15.795 9.973 29.568

Correlations Correlations Correlations Correlations

CY 0.188 0.210 0.220 0.234
BD −0.193 −0.164 −0.145 −0.186 −0.154 −0.228 −0.103 −0.247
RE 0.662 0.125 −0.104 0.672 0.132 −0.049 0.665 0.154 −0.005 0.641 0.166 0.008

Note: The top panel of the table presents, for different investment horizons (τ in days), sample values of the
mean (Mean), standard deviation (Std), Sharpe ratio (Ratio), skewness (Skew), excess kurtosis (XKurt), minimum
(Min), fifth percentile (Q05), fiftieth percentile (Q50), ninety-fifth percentile (Q95), and maximun (Max) for the
risk-free rate (RF) and individual risky asset excess returns (SK for stock, CY for commodity, BD for bond,
and RE for real estate). The bottom panel presents excess returns correlations. The mean, standard deviation,
minimum, percentiles, and maximum are in percentage units. The data are daily, and the sample period is from
January 2, 1989 to October 31, 2022.
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Table A2: Optimal portfolio weights and certainty equivalent: Non-overlapping

γ [ℓ] 3[0] 3[1] 3[2] 3[3]

κ 0.95 0.95 1 1.05 1.05 0.95 0.95 0.975 0.975 1 1.025 1.025 1.05 1.05 0.95 0.95 1 1.05 1.05

(N) (Y) (N) (Y) (N) (N) (Y) (N) (Y) (N) (Y) (N) (N) (Y) (N) (Y) (N) (Y) (N) (N) (Y)

τ
=

1

SK 100.08 99.17 82.73 82.39 0.00 88.64 88.11 75.20 74.44 45.65 45.77 0.00 57.69 58.12 86.22 85.66 72.57 72.57 0.00 85.54 84.98
CY 23.41 23.60 18.54 18.65 0.00 21.55 21.53 16.16 16.68 6.38 6.44 0.00 16.07 15.88 21.52 21.59 16.63 16.63 0.00 20.75 20.84
BD 275.21 274.54 224.79 226.24 0.00 251.66 252.15 208.10 202.48 123.99 123.74 0.00 178.30 178.66 247.60 247.00 182.54 182.54 0.00 244.87 244.40
RE −10.13 −9.58 −14.92 −14.84 0.00 −11.35 −10.88 −17.37 −17.20 −10.13 −10.25 0.00 −8.91 −9.06 −11.94 −11.39 −16.55 −16.55 0.00 −11.85 −11.36
Cτ 15.66 15.66 14.01 14.01 2.72 14.93 14.93 13.31 13.31 9.97 9.97 2.72 12.07 12.07 14.76 14.76 12.90 12.90 2.72 14.68 14.68
C ′
τ 15.66 15.66 14.01 12.23 14.93 14.71 13.26 8.89 9.96 −19.07 12.06 6.42 14.76 14.40 12.74 5.66 14.68 14.24

τ
=

5

SK 101.16 98.40 59.42 59.71 0.00 70.77 70.21 52.79 53.89 29.63 31.04 0.00 38.85 38.96 67.71 66.80 48.15 48.06 0.00 65.19 64.27
CY 22.64 23.21 10.99 10.85 0.00 20.76 20.69 7.74 10.01 4.26 3.67 0.00 14.44 14.68 19.67 20.04 8.00 8.80 0.00 20.38 19.82
BD 253.78 252.24 138.77 138.21 0.00 194.26 194.23 112.93 106.55 64.58 65.44 0.00 118.12 118.78 189.74 189.00 110.43 111.71 0.00 188.45 184.29
RE −16.39 −15.05 −12.36 −11.98 0.00 −10.86 −10.17 −14.41 −15.14 −6.14 −6.66 0.00 −4.17 −4.21 −9.91 −9.21 −17.22 −17.39 0.00 −8.36 −7.96
Cτ 14.90 14.89 10.96 10.96 2.72 13.11 13.11 10.10 10.10 7.15 7.15 2.72 9.54 9.54 12.82 12.82 9.80 9.80 2.72 12.69 12.69
C ′
τ 14.89 14.89 10.96 3.49 13.11 11.65 10.06 −6.16 7.04 −28.36 9.54 −3.65 12.82 10.56 9.31 −14.21 12.68 10.02

τ
=

10

SK 118.32 113.31 60.56 60.26 0.00 76.13 75.70 49.65 50.31 29.47 29.65 0.00 45.09 44.56 69.16 68.05 47.03 49.35 0.00 66.78 64.41
CY 25.46 26.54 11.05 12.83 0.00 22.02 22.52 10.04 10.35 7.32 5.30 0.00 13.57 13.67 20.87 20.98 5.82 3.91 0.00 20.07 20.76
BD 285.24 276.43 141.01 146.07 0.00 196.52 195.28 119.31 118.91 70.35 62.75 0.00 115.93 114.92 177.96 175.56 111.42 100.13 0.00 173.11 172.22
RE −32.30 −27.25 −21.69 −22.31 0.00 −15.46 −13.98 −20.03 −20.67 −12.19 −11.36 0.00 −7.10 −6.90 −13.47 −11.23 −18.91 −17.50 0.00 −12.23 −11.04
Cτ 16.05 16.03 10.67 10.67 2.72 12.91 12.91 9.79 9.79 6.76 6.78 2.72 9.08 9.08 12.41 12.41 9.41 9.43 2.72 12.21 12.21
C ′
τ 16.03 16.03 10.62 −0.09 12.91 10.70 9.74 −11.97 6.65 −27.90 9.06 −6.42 12.41 8.82 9.09 −21.08 12.21 7.83

τ
=

20

SK 107.25 99.96 49.01 48.59 0.00 64.07 62.95 42.48 39.51 23.78 24.27 0.00 36.39 35.44 52.52 52.93 34.19 36.95 0.00 50.07 49.88
CY 24.10 25.46 10.62 12.43 0.00 18.83 18.99 8.65 7.06 4.68 4.30 0.00 8.91 9.07 18.68 19.17 3.49 4.28 0.00 18.50 18.56
BD 252.97 242.18 121.24 121.70 0.00 162.33 160.50 89.07 88.79 54.61 55.06 0.00 98.56 97.59 145.50 143.91 87.62 88.73 0.00 140.94 139.07
RE −25.10 −19.60 −13.40 −11.77 0.00 −11.36 −9.94 −13.38 −12.03 −8.76 −8.92 0.00 −3.93 −2.90 −5.80 −5.29 −11.75 −11.47 0.00 −5.20 −4.64
Cτ 14.93 14.89 9.30 9.29 2.72 11.30 11.30 8.23 8.22 5.93 5.93 2.72 7.83 7.83 10.75 10.75 7.75 7.73 2.72 10.54 10.54
C ′
τ 14.89 14.89 9.27 −0.17 11.30 8.86 7.96 −10.99 5.62 −21.06 7.82 −5.84 10.75 6.63 7.48 −18.96 10.54 5.43

Note: For different investment horizons (τ ∈ {1, 5, 10, 20} in days) and for different combinations of preference
parameters (γ = 3, ℓ ∈ [0, 3], κ ∈ {0.95, 0.975, 1, 1.025, 1.05}), the table displays estimates of the optimal portfolio
weights (w) in individual risky assets (SK for stock, CY for commodity, BD for bond, and RE for real estate),
and the associated certainty equivalent, Cτ , without the approximation (N) and with the approximation (Y).
The cell C ′

τ (N) is the certainty equivalent of the right-hand side of equation (19), while C ′
τ (Y) corresponds to the

certainty equivalent of the standard MV portfolio with equal DA-implied risk aversion. The asset menu comprises
the risk-free rate and four indices including stock, commodity, bond, and real estate. The data are daily, and the
sample period is from January 2, 1989 to October 31, 2022.
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A: Downside risk weight B: Endog. Sharpe ratio (Portfolio) C: Endog. Sharpe ratio (Assets)
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Note: For different investment horizons (τ ∈ {1, 5, 10, 20} days) and preference parameters (γ = 3, ℓ ∈ [0, 3],
κ ∈ {0.95, 0.975, 1, 1.025, 1.05}), Panel A shows estimates of λD,τ , the weight assigned to the downside
mean-variance certainty equivalent in the WAMV portfolio optimization of equation (15). Panel B displays

estimates of S̃Rw,τ , the endogenous Sharpe ratio of the optimal portfolio. Panel C presents estimates of the
endogenous Sharpe ratios of the basic risky assets. The asset menu includes a risk-free rate and four indices
(stock, commodity, bond, real estate), with daily data from January 2, 1989, to October 31, 2022.

Figure A1: Optimal portfolio and assets performance measures
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Panel A

Panel B

Note: For different investment horizons (τ ∈ {1, 5, 10, 20} in days) and for different combinations of preference
parameters (γ = 3, ℓ ∈ [0, 3], κ ∈ {0.95, 0.975, 1, 1.025, 1.05}), the figure displays in Panel A the estimates of αD,τ ,
the weight assigned to the downside variance in computing the GDA-implied variance as in equation (14). In
Panel B, it displays the estimates of SRw,τ , the standard Sharpe ratio of the optimal portfolio. The asset menu
comprises the risk-free rate and four indices including stock, commodity, bond, and real estate. The data are
daily, from January 2, 1989 to October 31, 2022.

Figure A2: Optimal downside variance weight and standard Sharpe ratio
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