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Abstract. We propose a new methodology for modeling and estimating time-varying downside risk
and upside uncertainty in equity returns and for assessment of risk—return trade-off in financial mar-
kets. Using the salient features of the binormal distribution, we explicitly relate downside risk and
upside uncertainty to conditional heteroskedasticity and asymmetry through binormal GARCH (BiN-
GARCH) model. Based on S&P 500 and international index returns, we find strong empirical support
for existence of significant relative downside risk, and robust positive relationship between relative
downside risk and conditional mode.
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1. Introduction

The idea of a systematic trade-off between risk and returns is fundamental to the
modern finance theory. Merton (1973) intertemporal capital asset pricing (ICAPM)
theory asserts that there exists a positive and linear relation between the conditional
variance and expected excess market returns. Yet, as Rossi and Timmermann
(2009) point out, after more than two decades of research, there is little agreement
regarding the basic properties of this relationship. Both Ghysels, Santa-Clara, and
Valkanov (2005) and Rossi and Timmermann (2009) provide comprehensive
reviews of this literature.

Recent contribution to this line of research include Ghysels, Santa-Clara, and
Valkanov (2005) and Ludvigson and Ng (2007), who find a positive and significant
relationship in the US data, and Brandt and Kang (2004) who find a significantly
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Group, Stockholm School of Economics finance seminar, Bank of Canada, ESSFM 2010 at Gerzen-
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Governors of the Federal Reserve, and the University of St. Gallen for their comments, which im-
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negative conditional relationship. Bollerslev and Zhou (2006) find an unambigu-
ously positive relationship between returns and implied volatility, but they find that
the sign of the relationship between contemporaneous returns and realized volatility
depends on the underlying model parameters.

Two important underlying assumptions in the empirical risk—return trade-off lit-
erature are: (i) a constant market price of risk, and (ii) a symmetric conditional
distribution for returns. Time-varying market price of risk is widely accepted in
the term structure of interest rate literature; see Dai and Singleton (2002) and
Duffee (2002). Moreover, asymmetry in equity market returns and volatility has
a long history in the financial literature.' Christoffersen, Heston, and Jacobs
(2006) document the presence of time-varying conditional skewness in financial
time series. Jondeau and Rockinger (2003) document the existence of negative
skewness, both in international equity market and in foreign exchange market
returns. Harvey and Siddique (2000) show that conditional skewness captures
asymmetry in the risk. Negative time-varying conditional skewness implies that
extreme negative market realizations are more frequent than positive realizations.

We relax constant market price of risk and symmetric returns assumptions and
derive the market price of risk analytically. By relaxing these assumptions, we find
that the market price of risk is time varying and nonlinear in effective risk aversion
parameters. However, in order to make our results comparable to the existing liter-
ature, we linearize the risk—return relationship and estimate the parameters of the lin-
earized reduced form model. We define “downside risk” as the risk borne by the
investor if the realized market return falls below a certain threshold. If the market
return rises above the same threshold, we call it “upside uncertainty”. In addition,
we define the difference between downside risk and upside uncertainty as the “rel-
ative downside risk” for each time period. We find a robust positive trade-off between
market relative downside risk and the conditional mode. The market price of risk needs
to be positive to support a positive risk—return trade-off in market returns. In our study,
the market price of risk, which is the slope coefficient in the regression of excess
returns on conditional volatility, is a nonlinear function of conditional skewness.”
The shape of this nonlinear function depends on effective risk aversion parameters.
Moreover, we find that, for S&P 500 returns, the annualized average value of the
estimated market price of risk is close to the estimated Sharpe ratio in annual data.

We propose a new method to study risk—return trade-off in financial market
returns. First, we derive a reduced-form equilibrium relationship between risk
and equity returns for a representative investor with Gul (1991) disappointment

! See Hansen (1994), Bekaert and Wu (2000), and Brandt and Kang (2004) for a review.

2 In this study, we estimate Pearson mode skewness, defined as the difference between the mean and
the mode divided by the standard deviation, which is a more robust measure of asymmetry in com-
parison with conditional skewness. For a discussion, see Kim and White (2004).
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aversion preferences in an endowment economy.® This investor is aware of market
relative downside risk, and hence demands compensation for relative downside
volatility. This step is conceptually similar to the method of Ang, Chen, and Xing
(2006). Second, we argue that if the investor is aware of relative downside risk, then
this should be reflected in equilibrium asset prices. To be consistent with this ar-
gument, we assume that in equilibrium, logarithmic returns follow the binormal
distribution of Gibbons and Mylroie (1973), explicitly disentangling downside
and upside market volatilities. Under these conditions, we provide a detailed anal-
ysis of the risk—return trade-off in equilibrium. Third, to empirically examine this
risk—return trade-off, we introduce a new generalized autoregressive conditional
heteroskedasticity (GARCH) model, which we call binormal GARCH (BiN-
GARCH). We show that this model characterizes S&P 500 and many international
financial market excess returns well. Finally, we show that under binormal dynam-
ics and using the BiN-GARCH model, the relationship between conditional mode
and relative downside risk is positive and significant. These findings mean that
conditional skewness is a priced factor in financial markets.

This is the first paper to explicitly model upside and downside volatilities. Our
empirical findings indicate that first, on average, annualized daily downside and up-
side volatilities over the sample period are 17.42% and 15.56% (an average relative
downside volatility of almost 2%), respectively, for S&P 500 returns.* Additionally,
the data imply that annualized daily relative downside volatility is almost 2% for
Australia, Germany, and the UK. A summary of our findings is available in Panel
B, Table 1. Measures of upside and downside volatility are highly correlated. We find
a correlation of 0.82, which suggests co-movements in the same direction. Second,
our findings shed new light on the traditional “leverage effect” of Black (1976) and
Christie (1982). The leverage effect states that negative return shocks today have
larger impact on future volatility than positive return shocks of similar magnitude.
We find that negative shocks today have a much smaller impact on asymmetry than
positive shocks of similar magnitude. This “asymmetry in asymmetry” is the oppo-
site of what we typically observe in studies on asymmetry in volatility.

Our findings are instructive in understanding the conflicting empirical results on
risk—return trade-off reported in the literature since we tie these contradictory out-
comes to market asymmetry and the time-varying market price of risk. Moreover,

3 Recently, there has been renewed interest in this class of preferences. See Routledge and Zin (2010)
and Bonomo et al. (2011).

4 The observation that average relative downside volatility is close to 2% does not depend on the
parametric model used in estimation. In Panel B of Table 1, we present parametric and nonparametric,
high-frequency estimates of relative downside volatility. Both measures deliver the same magnitude
for this quantity. Standard deviations of relative downside risk in Panel B, Table 1 are generally
considerably larger than the average values, implying high variation. This is not surprising given
the empirical support for relative downside volatility as a pricing factor.
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our results suggest that the amplitude of this trade-off increases with the value of the
conditional skewness. Thus, we believe that the mixed results reported in the lit-
erature stem from forced estimation of a process by a single parameter. In partic-
ular, our empirical results support the findings of Ghysels, Santa-Clara, and
Valkanov (2005), Ludvigson and Ng (2007), and Rossi and Timmermann (2009).

Our work contributes to the literature on downside risks. Ang, Chen, and Xing
(2006) show that the cross section of stock returns reflects a premium for downside
risk and provide a methodology for estimating this downside risk premium using
daily data. We conduct a time-series study of downside risks, model and estimate
downside volatility through time, and examine the relation between downside risk
and measures of central tendency in asset returns. Barndorff-Nielsen et al. (2010)
introduce measures of downside risk, which they call “downside realized semivar-
iance.” These measures are entirely based on downward moves, measured by using
high frequency data. Building on this foundation, Andersen and Bondarenko
(2009) study the properties of model-free option implied volatility and refine
the notion of volatility premium based on nonparametric upside and downside
semivariance measures. We rely on a GARCH framework to measure and estimate
downside risk by maximum likelihood, using daily data.

Our study of high frequency data makes an important contribution to the liter-
ature on conditional skewness. Since the work of Hansen (1994), many studies
have tried to propose a testing procedure to evaluate the validity of competing con-
ditional skewness specifications.” We believe that we provide this crucial tool since
relative downside risk is driven by conditional skewness. Thus, testing for validity
of relative downside volatility specifications is in fact a test for validity of condi-
tional skewness. Our empirical findings also show that relative downside volatility
is not a proxy for other known pricing factors, such as the variance premium ex-
amined by Bollerslev, Tauchen, and Zhou (2009), but an independent and com-
plementary determinant of the equity risk premium.

The remainder of the paper is organized as follows. In Section 2, as the first step, we
present a simple theoretical model for the downside risk premium in a consumption-
based equilibrium setting to motivate our empirical study. A discussion of the prop-
erties of the binormally distributed returns in equilibrium follows. In Section 3, we
introduce the BIN-GARCH model. In Section 4, we discuss our data. We present and
discuss our empirical findings in Section 5. These results include findings for Stan-
dard and Poor’s 500 (S&P 500) excess returns and extensive robustness checks for
international data, high frequency data, and Mincer—Zarnowitz regressions for non-
parametric and BiN-GARCH measures of the downside risk. Section 6 concludes.

5> Examples include Harvey and Siddique (1999, 2000), Jondeau and Rockinger (2003), and Brooks,
Burke, Heravi, and Persand (2005), among others.
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2. A Simple Equilibrium Model of Downside Risk

We consider an equilibrium consumption-based setting, with a representative investor
who has a rational disappointment aversion utility function (henceforth, DA) of Gul
(1991), defined over the consumption flow. This utility function embeds downside risk
and allows the investor to treat downside risk and upside uncertainty differently.®

We further assume that in equilibrium, logarithmic returns follow a binormal
distribution. This allows us to explicitly disentangle measures of downside risk
and upside uncertainty in the stock market, measures that otherwise would not
be separable. We then derive and analyze the implied intertemporal risk—return
relationship and its sensitivity to investor’s preferences. Subsequent sections em-
pirically examine this new intertemporal risk—return tradeoff, using a large sample
of market index excess returns.

2.1 PREFERENCES, STOCHASTIC DISCOUNT FACTOR, AND PRICING CONDITIONS

Formally, let V, be the recursive intertemporal utility functional:

Vi=(1-=90)C; + oR:(Vi+1), (1)

where C, is the current consumption, ¢ is the time preference discount factor, and
R (V,41) is the certainty equivalent of the random future utility, conditional on time
t information. In DA preferences, the certainty equivalent function, R(-) is implic-
itly defined by:

RITT -1 [(® V-1 1 RARIY -1 w7 -1

== — —(==1 -~ .

1_7 Jfoo I_V dF(V) (O( )Jw( I_V 1_V )dF(V)
2)

The parameter o is the coefficient of disappointment aversion satisfying 0 < o« < 1,
and F(-) is the cumulative distribution function for the continuation value of the rep-
resentative agent’s utility. Several particular cases are worth mentioning. When « is
equal to one, R becomes the certainty equivalent corresponding to expected utility
and V, represents the Kreps and Porteus (1978) preferences. When o < 1, outcomes
lower than R receive an extra weight (1/o — 1), decreasing the certainty equivalent.

¢ Ang, Chen, and Xing (2006) use a similar setup to illustrate cross-sectional pricing of the downside
risk in an equilibrium setting. In their model, the utility function depends on wealth and not on con-
sumption. We construct our model using consumption-based preferences. However, since we assume
perfect elasticity of substitution along deterministic consumption paths, then the stochastic discount
factor in our model only depends on market returns. This is similar to the SDF in Ang, Chen, and Xing
(2006).
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Thus, « is interpreted as a measure of disappointment aversion, and outcomes below
the certainty equivalent are considered disappointing.” Figure 1 displays the differ-
ences between Kreps and Porteus (1978) preferences (¢ = 1) and Gul (1991) DA
preferences. It is clear that the lower the level of disappointment tolerance (smaller
o values), the steeper is the indifference curve in comparison with Kreps—Porteus
preferences.

The stochastic discount factor implied by the preferences is given by:

I(0R 41 < 1) + al(0R, 41 > 1) > 3)
H(6R; 11 < 1)] + oB([I(0R; 1 > 1)])’

_ —y
Sii+1 = 0(0R; 1) <Ez

where /() is the indicator function that takes the value 1 if the condition is met and
the value 0 otherwise, and R, is the simple gross return on an asset that yields
aggregate consumption as payoff, for which the stock market portfolio index is
a proxy. For the representative investor, down markets correspond to periods where
the log return, r,, | = In R, 1, falls below the marginal rate of time preference, —Iné.

Our theoretical model, while based on dynamic preferences, does not directly
relate the intertemporal marginal rate of substitution to the relative downside risk
factor. In the general case, variations in the market price—consumption ratio con-
tribute to the stochastic discount factor. These variations are endogenous to the
model and depend on the dynamics of market downside volatility. However, by
assuming perfectly elastic intertemporal substitution, we eliminate their effect to
ease the model solution. The recursion in Equation (1) characterizes the Epstein
and Zin (1989) recursive utility when the elasticity of intertemporal substitution
is infinite, meaning that the representative agent perfectly substitutes out consump-
tion through time. Our focus in this article is on returns and volatility. Thus, this
assumption, which eliminates the effect of consumption growth rate, additionally
eliminates the possibility of future volatility feeding back into current consumption
through precautionary savings. As a result, the dynamics of the relative downside
risk do not influence the equity premium solution. This means that the model does
not address the potential hedging demands arising from time-varying relative
downside risk. This issue is a subject for our future research.

Consumption and portfolio choice induces a restriction on the simple gross
return of the market portfolio that is given by the Euler equation:

Et[St,t+1Rl+l] = la (4)

7 Notice that the certainty equivalent, besides being decreasing in y, is also increasing in o.. Thus o is
also a measure of risk aversion, but of a different type than y.
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Figure 1. Disappointment aversion preferences and Kreps—Porteous Preferences

This figure depicts the indifference curves over two outcomes. o = 1 represents the familiar Kreps and
Porteus (1978) preferences. All other values of o represents Gul (1991) disappointment aversion pref-
erences. This figure shows that DA preferences with lower tolerance for disappointment, that is,
smaller values for «, have steeper slopes for indifference curves in comparison with Kreps and Porteus
preferences.

where the stochastic discount factor S, ; is given by Equation (3). Once we know
how the equilibrium returns are distributed, then Equation (4) constitutes the basis
for studying the equilibrium risk—return tradeoff.

2.2 EQUILIBRIUM RETURN DISTRIBUTION AND THE RISK-RETURN TRADEOFF

We use the binormal distribution introduced by Gibbons and Mylroie (1973) to
model logarithmic returns in equilibrium. It is an analytically tractable distribution,
which accommodates empirically plausible values of skewness and kurtosis, and
nests the familiar Gaussian distribution.® We assume that logarithmic returns, 7, 1,
follow a binormal distribution with parameters (m,, ,,, ©,,) conditional on infor-
mation up to time ¢. The conditional density function of 7., is given by:

_ 2 _ 2
Si(x) :Atexp<—%<x61’tnt> >I(x <my) + A,exp(—%(xcyz’:h> >I(x > my),

8 See Bangert, Goodhew, Jeynes, and Wilson (1986), Kimber and Jeynes (1987), and Toth and Szentimrey
(1990), among others, for examples of using the binormal distribution in data modeling, statistical analysis
and robustness studies.
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where m, is the conditional mode and 4, = /2/n/(o1, + 02,). Figure 2 compares
the probability density functions of standard normal and binormal distributions. It is
immediately obvious that with smaller values of Pearson mode skewness, the left tail
ofthe binormal distribution becomes increasingly “fatter” than standard normal, and
the right tail becomes “slimmer.” Also notice that smaller values for skewness, and
hence Pearson mode skewness, cause a rightward movement of the probability peak,
which is inline with the assumption of unequal treatment of downside and upside
volatility.’

We notice that m; is the conditional mode, and up to a multiplicative constant,
0%, and ¢%, are interpreted as conditional variances of returns, conditional on
returns being less than the mode (downside variance), and conditional on returns
being greater than the mode (upside variance), respectively. Specifically,

2 2
Var[ry1|rie <my] = (1 —;) a%_l and Var[r,q|rip1 > my] = (1 _;)U%,r
(5)

We consider this property to be the most important characteristic of the binormal
distribution, given our objectives in this project.

Binormal distribution can be parameterized by the mean p,, the variance 6,2, and
the Pearson mode skewness p,. Binormal distribution implies the following func-
tional forms for these statistics:

2
0'? = (1-2/m) (Jz,t - 01,:) + 01,02,
Dt = V 2/”(02,1 - Jl,t)/Ut (6)
Ky = my A+ opr =mp o/ 2/7T(0'2,t - 0'1,t)~

It can be shown that the initial parameters o, , and o, , are expressed in terms of
the total variance and the Pearson mode skewness as follows:

o = o = Va8 + V1= Ga8— 1))
o2 = o VafSp + V1= Br/8 = 1)7),
whichimpliesabound onthe Pearsonmode skewness: |p;| < 1/1/71/2 — 1 =~ 1.3236.

Assuming that log returns are conditionally binormally distributed, we still
need the conditional moment generating function M,(u) = E,[exp(ur.i1)] as

(7)

® We want a simple parametric framework that directly allows us to model downside and upside
volatility. There are many candidates, but binormal distribution has the advantage of simplicity
and tractability. In this regard, we follow the example of Bollerslev, Tauchen, and Zhou (2009), where
they assume conditional normality for stock returns to highlight the role of the variance risk premium.
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Figure 2. Standard normal and binormal marginal density functions

This figure compares the standard normal and binormal marginal density functions (f(X)) for different
values of Pearson mode skewness and the corresponding skewness values. The plot with p = s =
0 and drawn in solid line is the standard normal density function.

well as the conditional truncated moment generating function M,(u;x) =
E[exp(urs1)I(riy1 > x)] of returns to be able to explicitly characterize the
Euler equilibrium restriction (4). To save space and avoid a lengthy exposition,
these functions are explicitly given in the external appendix. However, we
show that the Euler Equation (4) can also be represented by a nonlinear restric-
tion, say

G(mtao-l,tvo-2,t) =0, (8)

on the parameters (m,, 6, G>,) of the conditional distribution of log returns. The mode

is then derived as a function of downside and upside volatilities from Equation (8).
The nonlinear function G is explicitly known and given by:

_ 51—}'Mt(1_7) + (a—1)M,(1—y;—1nd)

= ¢ 1+ (a—1)M,(0;—1nJ) (9)

_ Mt(I*V)ﬂL(“*{)Mr(l*V%O) -1

1+ (o—1)M,(0;0) ’

G(my, 01t Gz,t)

where M, (u) and M, (u; x) are, respectively, the moment generating function and
a the truncated moment generating function of »,,; + Ind. Since 7, + Ind has
a binormal distribution with parameters (m, + Ind, 6, 5,,), we can conclude that
m, and 0 are not separately identifiable from Equation (9). The restriction (8)
implies that the conditional mode is in fact an implicit nonlinear function of
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conditional downside and upside volatilities, m; = —Ind +g(c, ,, 2,,). The implicit
function g is parameterized by the preference parameters y and o only.

The equation m; = —Ind +g(c;, O,,) defines a new risk—return relation that
relates the conditional mode to the conditional downside and upside volatilities.
To be able to deal with this new trade-off between risk and reward, we first-order
linearize the nonlinear restriction (8) around the steady-state values (G, ;) to obtain

m; = —Ind + g(o1,4,024) = Ao + A01; + 4202y, (10)
where

__Go,(8(01,02),01,02)
Gn(g(G1,02),01,02) Gn(g(G1,62),61,62)  (11)

and where m = —Ind + g(61, 62) and, Gy (-, -, -), Gy, (+, -, ) and Gy, (-, -, -) denote
the first-order partial derivatives of the function G(-, -, -) with respect to its argu-
ments, m, g; and o5, respectively. These results are based on applying the well-
known implicit function theorem to Equation (8).

Equation (10) clearly shows that 4, and 4, depend on y and «, but not on J. In
equilibrium, only effective risk aversion (i.e. the (y, o) pair in this case) determines
the sensitivity of reward to risk, which is typical in the risk—return trade-off literature.
Figure 3 presents the relationship between A, and 4, and structural parameters, o and y.
We compute the values of upside and downside volatility premia, given analytical
solutions for the first two expressions in Equation (11) and theoretically plausible val-
ues for o« and y.'° The figure clearly shows that the lower the disappointment aversion
(high «), the smaller the values of both A; and A,. Similarly, the size of risk aversion
parameter, 7, increases the sensitivity of the conditional mode to upside and downside
volatilities, for any given value of disappointment aversion.

It is well known that mode is more robust to outliers than the mean. This property
holds for conditional mode and expected values. Mode is also an interesting mea-
sure of reward as it represents the most likely realization of returns. Thus, disap-
pointment averse investors view the conditional mode to be at least as informative
as the expected value of returns. Given the expression (10), the traditional
risk—return trade-off that relates expected returns to the total variance may be
expressed as:

W =m; + op; = Ao + }:61‘7 (12)

19 Fyll derivation of relationships in Equation (11) for A; and A, in terms of structural parameters, y
and o, is long, tedious, and is done using Maple.
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Figure 3. The relationship between downside and upside volatility premia and structural parameters
This figure depicts the relationship between downside volatility premium, A, upside volatility pre-
mium, A,, and structural parameters o and 7, which represent disappointment aversion and risk aver-
sion coefficients, respectively. The values plotted in this figure are based on the analytical solutions to

Go, (8(61,62),61,62) Go, (8(61,62),61,02) and computed for plausible values of o and .

M= G eeaae) A 2 = GG s

where

i = (1= (= i)Vl + (i + a1 = Gu/s—1pF. (13)

The first equality in Equation (12) follows by the definition of mean in binormal
distribution, Equation (6). The second equality in Equations (12) and (13) follow from
Equations (7) and (10). Equation (12) characterizes the traditional risk—return trade-off
in this model and shows that the price of risk depends on the asymmetry in returns.

The impact of skewness on the traditional risk—return relation is clearly visible in
Figure 4. The traditional linear risk—return tradeoff of Merton (1973) corresponds to
skewness equal to zero, which is depicted by the solid line in Figure 4. In this figure,
we set disappointment aversion coefficient, «, to be equal to 1. This means that there
is no disappointment aversion in the model and the investor has Kreps—Porteus
preferences. Kreps—Porteus preferences are symmetric. Hence, only asymmetry
in returns matters for the risk—return tradeoff. If the risk aversion coefficient (y)
is less than 1, as in the left-hand side panel, then the relation between equity pre-
mium and conditional volatility strengthens with increasing positive skewness, and
weakens with increasing negative skewness. The middle panel shows that when
risk aversion coefficient equals 1, then skewness has no impact on the the risk—
return relationship. The right-hand side panel shows that when the coefficient
of risk aversion is greater than 1, then the equity premium—volatility relation weak-
ens with increasing positive skewness and strengthens with increasing negative
skewness. In our opinion, since skewness is time varying, Figure 4 sheds some
light on the empirically inconclusive results seen in the literature.
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Figure 4. The impact of skewness on risk—return tradeoff when o = 1

This figure depicts the impact of skewness on the traditional risk—return relationship of Merton (1973).
The values on the vertical axis represent annualized equity premium in percentage. Values on the
horizontal axis represent annualized volatility. The case studied by Merton corresponds to normally
distributed returns (skewness = 0, solid line in the figure). Asymmetries in this figure are solely
due to asymmetry in distribution, since by setting oo = 1, we shut down the channel for disappointment
aversion in preferences. With y < 1, negative values of skewness, which imply negative asymmetry in
returns, weaken the risk—return relation. On the other hand, positive values of skewness strengthen this
relationship. With y = 1, skewness does not have an impact on the risk—return relationship. Negative
values of skewness, which imply negative asymmetry, strengthen the risk—return relation, when y > 1.
Positive values of skewness, on the other hand, weaken this relationship.

3. Conditional Mode and Pearson Mode Skewness
3.1 BIN-GARCH MODEL SPECIFICATION

We allow for time variation in the return distribution. Specifically, we allow for
heteroskedasticity dynamics similar to GARCH models, besides we directly model
the mode and the Pearson mode skewness of the conditional return distribution.
This is where our work differs from existing competing models. We rely on con-
ditional mode and Pearson mode skewness to model central tendency and asym-
metry since they are less sensitive to outliers than mean and skewness.''

"' See Kim and White (2004) for a detailed discussion.
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We assume that, conditional on information up to time ¢, returns r,,; follow
a binormal distribution with mode m,, variance a? and Pearson mode skewness
p: In line with the literature, we allow for the negative correlation between vol-
atility and returns or the so-called “leverage effect,” where firms’ leverage increases
with negative returns. We borrow our specification for heteroskedasticity from the
NGARCH model of Engle and Ng (1993),

o2 =Py + 1ot + PacZ(zes1 — 0)°, (14)

wherez,y1 = (ri11 — Eq[ri11]) /0, are standardized residuals. As a result, our spec-
ification nests NGARCH.'? Christoffersen and Jacobs (2004) show that NGARCH
has a better out-of-sample performance in option pricing compared to several al-
ternative GARCH models.

Given that the Pearson mode skewness is bounded (|p,| < 1/4/7/2 — 1), we use
the hyperbolic tangent transformation to (i) guarantee the bounds, and (ii) to pre-
serve the direction of variation such that we can directly interpret the estimated
parameters, following Hansen (1994) and Jondeau and Rockinger (2003). As a re-
sult, we assume that the Pearson mode skewness evolves following:

2 & * * *
Piy1 = \/n_ztanh(rco—i—rc]thI(z,H > 0) +zczzt+ll<z,+1 < 0) + K3p,>,
(15)

where z: 1 = (41 —my) /o, Accordingly, ki, K, and k3, measure the impact of
positive and negative shocks, as well as persistence on p,. Our formulation for
skewness is an extension of the model developed in Harvey and Siddique
(1999). This nonlinear GARCH-type dynamics of the conditional Pearson mode
skewness also features asymmetry in asymmetry. Asymmetries in the Pearson
mode skewness are generated by deviations of realized returns from the conditional
mode. We recall that dynamics of volatility and Pearson mode skewness lead to
direct downside and upside volatility modeling through Equation (7).

Alternatively, it is possible to specify the dynamics of ¢, , and o, ,. However, we
want to rely on well-known dynamics for volatility (o,). Many authors use GARCH
dynamics for conditional variance and this choice characterizes the returns well. In
our model, upside uncertainty and downside risk, together characterize the (total)
volatility. Hence, we want them to give rise to NGARCH dynamics for o,.

Following the linear approximation in Equation (10), we specify the conditional
mode as:

2 Our empirical findings do not rely on NGARCH-type dynamics.Assuming EGARCH-type
dynamics of Nelson (1991), we find very similar results.
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m; = Ay + }4617, + /120’27;. (16)

This specification of the conditional mode, GARCH-in-Mode, is motivated by
the equilibrium model of Section 2, and is analogous to the ARCH-in-Mean model
of Engle, Lilien, and Robins (1987), which relates expected returns to volatility. We
recall from Section 2.2 that ¢, , and o, , are defined by Equations (5) and (7).

The mode, similar to the mean, also characterizes the central tendency. Hence,
we assume that in Equation (16), the future conditional mode has a linear relation-
ship with upside or downside volatilities of returns, depending on whether return
realizations are above or below the current conditional mode.

3.2 BIN-GARCH AND RISK-RETURN TRADE-OFF

Based on the ICAPM model of Merton (1973), the vast majority of studies focus on
verifying a positive (linear) relationship between the conditional expected excess
return of the stock market and the market’s conditional variance through estimation
of a time-invariant market price of risk.

In what follows, we propose an alternative to the conditional mean and condi-
tional variance relationship as a measure for risk—return trade-off in empirical tests.
As discussed above, for negatively asymmetric returns with outliers, and assuming
a time-varying market price of risk, we build our testing procedure for risk—return
trade-off based on a relationship between the conditional mode and the conditional
downside and upside variances. The basis of our proposal is the relationship be-
tween the conditional mode and the conditional mean in Equation (16).

First, if both the conditional mode and the conditional Pearson mode skewness
are constant, the first equality in Equation (12) implies that they are respectively the
drift and the slope of the linear regression of returns onto the conditional volatility.
In this case, a negative Pearson mode skewness implies that expected returns fall in
response to an increase in volatility. Consequently, the positive linear relationship
between expected returns and volatility, as suggested by Merton’s (1973) ICAPM,
would be inconsistent with the fact that both the conditional mode and the condi-
tional Pearson mode skewness are constant and the latter is negative.

Second, based on Ang, Chen, and Xing (2006), it is clear from Equation (5) that
o1, and o, are, respectively, the measures of market downside and upside vol-
atilities using the conditional mode of returns as the cutoff point. If equity is more
volatile in a bear market than it is in a bull market, then investors require a com-
pensation for holding it, since equity tends to have low payoffs when they feel poor
and pessimist, compared to when they feel wealthy and confident.'® This is in line

13 Explicitly, this statement translates into ¢, > 0,,.
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with what Cochrane (2007) points out about the relationship between equity pre-
mium and business cycles.

So far, we have shown that our theoretical results imply a positive relationship
between the conditional mode and the relative downside risk. This result does not
contradict the conventional risk—return equation used in the literature. As discussed
in Section 2.2, we can rewrite the expected return as:

Bylri 1] =40 + i;ﬁaza (17)

where A";k is defined in Equation (13). This implies a time-varying price of risk,
which depends on the conditional asymmetry. This relationship is similar to the
typical equation seen in the literature, for example, in Ghysels, Santa-Clara,
and Valkanov (2005), except for time variation in the market price of risk.

4. Data

We use S&P 500 index excess returns and Morgan Stanley Capital International
(MSCI) daily market index excess returns for five major markets obtained from
Thomson Reuters Datastream. We use USD-denominated MSCI indices in order
to have comparable results. All these series start in January 1980 and end in
December 31 2009.

Table I reports summary statistics of the data. Annualized return means and stan-
dard deviations in percentages are reported in the fourth and the fifth columns. We
report unconditional skewness in column six. We observe negative unconditional
skewness for all the market returns. The value of unconditional skewness is not
small relative to the average daily returns. All series seem to be highly leptokurtotic
since they all have significant unconditional excess kurtosis. The reported p values
of Jarque and Bera (1980) normality test imply significant departure from normality
in all series. Our proxy for the risk-free rate is the yield of the 3-month constant
maturity US Treasury Bill, which we obtained from the Federal Reserve Bank of St
Louis FRED II data bank. The crash of October 1987, the Asian crisis of 1997, and
the Russian default of 1998 episodes are represented in the data. All data series
include the 2007-09 Great Recession.

Our intraday data series come from Olsen Financial Technologies and are their
longest available 1-minute close level S&P 500 index price series. This data set spans
the period from February 1986 to September 2010. To reduce the market microstruc-
ture effect in our empirical results, we construct intradaily returns at frequencies
lower than 1 minute. VIX data are freely available from Chicago Board of Trade’s
website. Data on monthly variance risk premium are from Hao Zhou’s website.
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Table 1. Summary statistics of the data

The top panel of this table reports summary statistics of excess returns. Calculation of the returns is
based on subtracting daily 3-months U.S. Treasury Bill rate from the log difference of the market total
return index in each market. Mean of excess returns and standard deviations are reported as annualized
percentages. Excess kurtosis values are reported. The column titled “J-B p-Value” reports p values of
Jarque and Bera (1980) test of normality in percentages. The bottom panel reports the computed
statistics of the observed relative downside volatility (RDV) in the data. All the results are based on
fitting the full BIN-GARCH model to the data, except for S&P 500 (NP). Reported RDV is based on
the mean difference between filtered downside and upside volatilities. The first column reports the
annualized RDV, and the second column is the standard deviation of this quantity. Due to availability
of high frequency data for S&P 500 returns, we also report the nonparametric estimate for relative
downside volatility for the USA denoted as S&P 500 (NP), based on 15-minute returns. The sample
period is January 1 1980 to December 31 2009. Source: Thomson Reuters Datastream and FRED 11
data bank at the Federal Reserve Bank of St Louis.

Panel A: Descriptive statistics, excess returns

Return series Mean (%) SD (%) Skewness Kurtosis J-B p value
S&P 500 348 21.94 —1.24 31.87 0.01
Australia 0.69 27.98 —3.36 71.32 0.01
Germany 2.31 27.41 —0.23 9.49 0.01
Japan 0.36 27.11 —0.09 11.07 0.01
Switzerland 4.47 2243 —-0.24 9.27 0.01
UK 1.88 24.24 —0.32 12.33 0.01

Panel B: Descriptive statistics, relative downside volatility

RDV (%) SD (%) Skewness Kurtosis J-B p Value
S&P 500 1.88 3.35 6.68 148.22 0.01
S&P 500 (NP) 1.84 8.71 1.21 16.36 0.01
Australia 225 5.16 14.41 451.99 0.01
Germany 2.18 2.89 4.28 50.29 0.01
Japan 0.19 242 7.50 218.74 0.01
Switzerland 1.40 2.42 5.67 77.69 0.01
UK 2.19 2.22 3.62 44.67 0.01

Figure 5 plots the time series for the relative downside volatility in S&P 500
returns in 1980-09 period, along with the upper and lower 95% confidence bands.

5. Empirical Results

5.1 BIN-GARCH FITTING OF S&P 500 EXCESS RETURNS

We now turn our attention to maximum likelihood estimation of the BIN-GARCH
model, introduced in Section 3, and discuss the results. Our first step is to study the
ability of different BIN-GARCH specifications in capturing the dynamics of the finan-
cial time series. We then perform extensive robustness testing. Thus, we first fit the S&P
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Figure 5. Relative downside volatility for S&P 500 excess returns, 198009

The solid line in this figure shows the annualized daily relative downside volatility, the difference between
downside risk and upside uncertainty, for S&P 500 excess returns over 3-month treasury bill yields. The
computed values are based on fitting the full BIN-GARCH model to daily returns starting in January 1980
and ending on December 2009. The black solid line represents computed relative downside volatility
values. We plot every 22nd computed value. We use dashed and dotted lines to represent the upper
and lower 95% confidence bands around relative downside volatility values. Source: Thomson Reuters
Datastream and FRED II data bank at the Federal Reserve Bank of St Louis.

500 excess returns using five BIN-GARCH specifications.'* We then use the best model
to conduct the risk—return trade-off study. Our metrics for the best fit are the likelihood
ratio (LR) tests against the benchmark model and the other specifications studied.

In this study, the canonical NGARCH model of Engle and Ng (1993) is the
benchmark for model comparison. Estimated parameters of NGARCH model
are reported under Specification (I) in column 2 of Table II. With NGARCH spec-
ification for returns, the conditional Pearson mode skewness is zero and the mode,
which in this case is equal to the mean, is constant.

Asis seen in Table II, LR tests indicate that all other models studied are preferred
to NGARCH. Similarly, LR tests of Models Il to V against each preceding model
indicates that the richer models are preferred to the simpler models introduced. The

14 By setting Pearson mode skewness equal to zero, BIN-GARCH nests Engle and Ng (1993).
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Table 11. ML estimation of various BiIN-GARCH models using S&P 500 daily excess returns

This table presents maximum likelihood estimation results for different specifications of the binormal GARCH model for S&P 500 daily excess
returns. The sample spans continuously compounded value-weighted returns on the S&P 500 Index from January 2 1980 to December 31 2009.
Standard errors are given in parentheses. *, T, and F denote statistical significance at 1%, 5%, and 10% levels, respectively. LR test statistics labeled as
“LR Test Stat (1)”” are computed with respect to the benchmark NGARCH model of Engle and Ng (1993), represented as Model (I). Likelihood ratio
test statistics labeled as ‘LR Test Stat (2)”” are computed with respect to the preceding model. Model (II) relaxes the symmetry assumption by allowing
anonzero p. Model (II) allows for time-varying p. Model (IV) imposes 4, = —/; restriction. Model (V) allows for time-varying conditional mode and
relaxes the 4, = —4; restriction. Model (V) is the full BIN-GARCH model discussed in Section 3.

Estimated

parameter @ 1) (1ID) 1v) V)

m 4.65E-05* (1.65E-05) 0.0009* (0.0002) 0.0008* (0.0002)

Ao 0.0002% (0.0001) —0.0004 (0.0003)
M 0.6756* (0.0642) 0.6608* (0.0585)
Ao —0.5805* (0.0751)
Po 1.56E-06* (2.11E-07) 1.15E-06* (2.02E-07) 1.18E-06* (2.02E-07) 1.35E-06* (1.96E-07) 1.62E-06* (2.60E-07)
b1 0.8841* (0.0086) 0.8920* (0.0081) 0.8835* (0.0092) 0.8855* (0.0086) 0.8796* (0.0097)
b2 0.0642* (0.0051) 0.0628* (0.0050) 0.0607* (0.0050) 0.0623* (0.0050) 0.0621* (0.0050)
0 0.7955* (0.0661) 0.8078* (0.0668) 0.9167* (0.0828) 0.8370* (0.0749) 0.8546* (0.0777)
P —0.1138* (0.0187)

Ko —0.0628* (0.0158) —0.0752* (0.0209) —0.0815* (0.0197)
K1 0.0710* (0.0167) 0.1449* (0.0347) 0.1568* (0.0318)
Ko 0.0187% (0.0105) 0.0725* (0.0172) 0.0680* (0.0167)
K3 0.26031 (0.1043) 0.2903* (0.0758) 0.2842* (0.0737)
Diagnostic

Measures

Log-Lik 24,639.54 24,657.87 24,673.16 24,699.76 24,701.69
LR test Stat (1) 36.67* 67.24* 120.46* 124.31*

LR test Stat (2) 36.67* 30.58* 53.20* 3.86
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only exception are Models IV and V. LR test statistic indicates that these two mod-
els are indistinguishable from each other."”

We depart from the NGARCH model by allowing a constant, but nonzero, Pear-
son mode skewness in Specification (II). Parameter estimates of the model are
reported in Column 3 of Table II. The estimated value of the constant conditional
Pearson mode skewness is —0.1138. Results for this specification confirms that
S&P 500 index returns are conditionally negatively skewed. The gain in likelihood
resulting from the inclusion of a single parameter from (II) to (I), the associated LR
test statistic of 36.67 and the information criterion all indicate that the NGARCH
with i.i.d. Gaussian standardized residuals is rejected in favor of the GARCH with
constant skewness at the 1% significance level or better. Estimates of constant con-
ditional mode and Pearson mode skewness are, respectively, positive and negative
and strongly significant. As discussed in Section 3, this leads to a negative relation-
ship between expected returns and volatility. A positive risk—return relation would
simply mean that either the mode or the Pearson mode skewness is misspecified, or
both. This is an important result that underpins our study of risk—return trade-off
based on GARCH-in-Mode estimations.

In Specification (III), we keep the mode constant and allow the Pearson mode
skewness to vary over time and follow the nonlinear autoregressive dynamics spec-
ified in Equation (16). We report the estimated parameters of the specification (III)
in the fourth column of Table II. All parameters are strongly significant and the
inclusion of three more parameters compared to Specification (II) induces a substan-
tial gain in likelihood. The corresponding LR test statistic of 67.24 and information
criterion also strongly reject the NGARCH model in favor of Specification (III).
Moreover, based on the difference in log-likelihoods between Specifications (1)
and (II), we find that LR test statistic of 30.5696, which is statistically significant
at the 5% level or better, leads us to favor the autoregressive conditional asymmetry
specification over constant Pearson mode skewness.

These results further suggest that realizations of returns relative to the conditional
mode have different impacts on conditional asymmetry as measured through the
Pearson mode skewness. Estimates of x| and x, are both positive and x; is three
times more than k5. Thus, increases in the Pearson mode skewness due to reali-
zation of returns above the conditional mode are significantly larger than the reduc-
tions in the Pearson mode skewness due to realization of equal absolute value-sized
returns below the conditional mode.

15 Hansen (1994) uses a skewed Student’s #-test density for modeling conditional skewness and kur-
tosis in his autoregressive conditional density method. We also fit the S&P 500 and international
returns using an NGARCH model with skewed Student’s-z errors. Since BIN-GARCH does not nest
this model, we cannot rely on likelihood ratio tests to compare them. However, BIC values imply that
BiN-GARCH is at least as good as NGARCH with skewed- errors in fitting the data.
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Equation (17) links the conditional mode to upside and downside volatilities.
With 4, =~ —A4,;, then the mode is a function of the relative downside volatility,
01— O2 that iS,

my =~ Ay + },1(017t—62,1). (18)

We test the Specification (IV) since we find the model-implied absolute values of
A1 and A, to be close to each other and they have the opposite sign for the lower but
significant level of disappointment aversion (Figure 3).

In Specification (IV), we relax the fixed mode assumption maintained in Spec-
ifications (I-III). Estimation results for Specification (IV), which means fitting
Equation (18) to the data, are reported in column 5 of Table II. In comparison with
Specification (III), there is only one meaningful restriction imposed on Specifica-
tion (IV): 4, = —A,. However, this linear restriction seems reasonably valid. This is
due to the observation that first, LR test statistic of 120.45 implies that Specification
(IV) is statistically preferable to the baseline NGARCH model at the 1% signifi-
cance level or better. Second, in comparison with Specification (III), Specification
(IV) is preferred since this model induces gains in likelihood that are not due to the
inclusion of additional parameters. This is attested by LR test statistic of 53.21,
which is statistically significant at the 5% confidence level or better. Estimated
parameters are all statistically significant at conventional confidence levels.

The estimated parameters of the full BIN-GARCH model, Specification (V), are
reported in column 6 of Table II. Again, all estimated parameters are significant at
conventional levels except for Ay, the drift in the conditional mode. As is seen in the
table, this specification is readily preferable to the baseline NGARCH model based
on the LR test. In comparison with Specification (I'V), first notice that while we have
relaxed the 1, = —/; restriction, the values of estimated 4; and 4, are reasonably
close and have opposite signs, thus confirming the validity of the negative impact in
the time-varying conditional mode, explored in Specification (IV).'° Second, in com-
parison with Specification (III), responses of the asymmetry to return realizations
above and below the conditional mode increase when the conditional mode becomes
time varying. Notice that the estimates of x; and k, are more than twice their re-
spective values when the mode is time invariant. The LR test at the 1% level rejects
Specifications (I) to (III) in the table against Specification (IV) and against the full
BiN-GARCH specification. This test fails to reject Specification (IV) against Spec-
ification (V), implying that the two models are statistically equivalent.

In what follows, we use Specification (V) as our estimation model of choice. The
reason for this selection is two-fold. First, we estimate both structural parameters of

!¢ They have the same order of magnitude, and the ratio of their absolute values is close to 0.88.
Crucially, the absolute values of the estimated parameters are quite close, less than one standard error
apart. Thus, one can reasonably infer that specifications (IV) and (V) are statistically equivalent.
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the preference function, « and 7y, as well as the premia for downside risk and upside
uncertainty, 4; and /. In order to identify both o and 7, we need both relationships
in Equation (11). This requirement forces us to estimate the full model. Second, we
propose relative downside premium as another factor to be priced. Assuming only
asymmetry in returns and using standard Kreps and Porteus (1978) preferences
would not allow us to separate upside and downside volatility premia (in other
words, relative downside risk premium). Bollerslev, Tauchen, and Zhou (2009)
use Epstein—Zin—Weil preferences to separate the volatility premium from the mar-
ket risk premium. The reason is that Epstein and Zin (1989) preferences have one
more preference parameter, | (intertemporal elasticity of substitution), in compar-
ison with the standard Kreps and Porteus (1978) preferences. Similarly, we need the
disappointment aversion parameter, o, in addition to the coefficient of risk aversion,
7, to separate relative downside risk premia in our empirical procedures.

In Figure 6, we provide graphical representations for the contribution of relative
downside risk for S&P 500 index daily excess returns. The annualized daily vol-
atility and the daily Pearson mode skewness are plotted in panels A and B of Figure
6. On average, the annualized daily volatility for the sample period is 16.06%. The
daily Pearson mode skewness is —0.1289. This value closely matches the estimated
parameter for the i.i.d. Specification (II) in column 3 of Table II. Fluctuations in the
Pearson mode skewness show that, although the conditional asymmetry is centered
to a negative value, stock returns can be positively skewed. This contrasts with the
IG-GARCH model of Christoffersen, Heston, and Jacobs (2006), which imposes
a negative conditional skewness over time. Instead, the direction of asymmetry in
the BIN-GARCH model is determined by relative downside volatility. Returns are
negatively skewed only if equity is more volatile in a declining market than in
arising market, and are positively skewed otherwise. Finally, we present the filtered
downside and upside volatility series in panels C and D of Figure 6. On average,
annualized daily downside and upside volatilities over the sample period are
17.42% and 15.56% (an average relative downside volatility of almost 2%), respec-
tively. These two measures are highly correlated, a correlation of 0.82, which sug-
gests co-movements in the same direction.

We also analyze the news impact curves resulting from the BIN-GARCH model.
Panel A of Figure 7 shows the reaction of market, downside, and upside volatilities
to return shocks. The asymmetric pattern that emerges for market volatility is in-
teresting and corroborates existing findings.'” Positive and small negative return
shocks lower market volatility. Large negative shocks, on the other hand, signif-
icantly increase market volatility in comparison with positive shocks of the same
magnitude. This asymmetric pattern transmits to downside and upside volatilities
too. Negative or small positive return shocks either do not change or slightly reduce

17 See Bollerslev, Litvinova, and Tauchen (20006).
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B. Pearson Mode Skewness

A. Annualized Market Volatility
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Figure 6. BIN-GARCH conditional moments for S&P 500 annualized daily excess returns

The figures above show conditional moments for annualized daily S&P 500 index excess returns.
These values are filtered after fitting the returns series, using Specification (IV) in Table 2. In Panel
A, we report conditional “total” market volatility. Conditional Pearson mode skewness appears in
Panel B. We report filtered annualized downside and upside market volatility measures in Panels C
and D, respectively. Sampling period is January 2 1980 to December 30 2009. Source: Thomson
Reuters’ Datastream.

upside volatility. On the other hand, positive return shocks increase upside vola-
tility sharply. In contrast, while positive return shocks lower downside volatility,
negative return shocks of the same magnitude cause noticeably larger increases in
downside volatility.

Finally, Panel B of Figure 7 displays the reaction of market asymmetry to pos-
itive and negative return shocks. It is immediately obvious that this response is
highly asymmetric and kinked at the origin. While negative return shocks cause
linear reductions in market asymmetry, positive return shocks of the same magni-
tude significantly increase market asymmetry. These increases are arguably non-
linear. We can interpret this pattern as follows: a negative return shock today
increases the likelihood of negative return shocks tomorrow. On the other hand,
a positive return shock today increases the likelihood of positive returns tomorrow
much more than a negative shock of a similar magnitude increases the possibility of
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Figure 7. Volatility and asymmetry news impact curves

Panel A of'this figure displays the response of market, upside, and downside volatility to negative and
positive return shocks. Similarly, in Panel B, we observe the impact of positive and negative return
shocks on market asymmetry. We view the response of market asymmetry to negative and positive
return shocks as supportive of presence of a “asymmetry in asymmetry” effect in market returns data.
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future negative shocks. We find this result to be a nice confirmation of our “asym-
metry in asymmetry” assertion.

5.2 EMPIRICAL PERFORMANCE OF BIN-GARCH

So far we have shown that BIN-GARCH model characterizes S&P 500 daily excess
returns for 1980—09 period. In this section, we study the performance of restricted
and unrestricted BIN-GARCH fitting of S&P 500 returns in the full sample and in
three subsamples. As mentioned in the previous section, we use Specification (V)
in Table II as the preferred model. Hence we use that specification for estimation
in what follows. Estimation results are reported in Tables III and IV.

We break up the S&P 500 excess returns sample into three subsamples: 1980—
89, 1990-99, and 2000-09. Each subsample includes significant events or market
activity periods. For example, the crash of October 1987 and the oil shock of 1980
are in 1980-89 subsample. The second subsample, 1990-99, includes the dot-com
boom of the late 1990s. The last subsample includes data for the Great Recession.
We fit the data in each subsample using maximum likelihood methodology and the
Specification (IV) discussed in the previous section.

In what follows, two sets of models are estimated, based on our discussion in
Sections 2.2 and 3. Table III reports the results from fitting the full BIN-GARCH

Table 111. ML Estimation of unrestricted BiN-GARCH model using S&P 500 daily excess returns:
robustness checks

This table presents maximum likelihood estimation results for binormal GARCH model using S&P
500 daily excess returns. The sample spans continuously compounded value-weighted returns on the
S&P 500 Index from January 2 1980, to December 31 2009, and divided into three subsamples.
Standard errors are given in parentheses. *, T, and  denote statistical significance at 1%, 5%, and
10% levels, respectively.

Estimated

parameter 1980-89 1990-99 2000-09 1980-09

Ao —0.0015 (0.0011) —0.0004 (0.0005) —5.09E-05 (0.0004) —0.0004 (0.0003)
a 0.5829* (0.1107) 0.5633* (0.0660) 1.8367% (1.1681) 0.6608* (0.0585)
A2 —0.37551 (0.1446) —0.4308* (0.0747) —2.1968 (1.5432) —0.5805* (0.0751)
Bo 4.09E-06* (9.56E-07) 1.25E-06* (3.65E-07)  1.29E-06* (3.43E-07) 1.62E-06* (2.6E-07)
B 0.8750* (0.0197) 0.8821%* (0.0184) 0.8534%* (0.0192) 0.8796* (0.0097)
B2 0.0600* (0.0095) 0.0571%* (0.0096) 0.0471%* (0.0078) 0.0621* (0.0050)
0 0.6196* (0.1443) 0.8858%* (0.1348) 1.4136* (0.2071) 0.8546* (0.0777)
o —0.0455% (0.0264) —0.1677* (0.0330) —0.0879% (0.0490) —0.0815* (0.0197)
o 0.1341* (0.0467) 0.3653* (0.0500) 0.0121 (0.0184) 0.1568* (0.0318)
o 0.1025%* (0.0202) 0.0175 (0.0303) 0.0419 (0.0463) 0.0680* (0.0167)
o3 0.26321 (0.1080) 0.1164 (0.0801) 0.2796 (0.2166) 0.2842* (0.0737)

LogLik 8,221.70 8,604.72 7,887.08 24,701.69
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Table TV. ML estimation of restricted BIN-GARCH model using S&P 500 daily excess returns: robustness checks

This table presents maximum likelihood estimation results for binormal GARCH model using S&P 500 daily excess returns. The sample spans
continuously compounded value-weighted returns on the S&P 500 Index from January 2 1980 to December 31 2009, and divided into three
subsamples. Standard errors are given in parentheses. *, T, and F denote statistical significance at 1%, 5%, and 10% levels, respectively.

1990-99

2000-09

1980-09

—0.0003 (0.0005)
1.9824* (0.1086)
0.8326* (0.1325)

1.08E-06* (3.11E-07)

0.8981* (0.0155)
0.0562* (0.0088)
0.7404* (0.1204)
—0.1469* (0.0459)
0.2921* (0.0806)
0.0340 (0.0335)
0.1284 (0.1255)

—0.0005 (0.0003)
1.0169* (0.0415)
0.9703* (0.0831)

1.63E-06* (3.51E-07)
0.8308* (0.0175)
0.0561* (0.0079)
1.3870* (0.1579)
—0.0934 (0.0669)
—0.0770 (0.0745)
0.1198+ (0.0526)
—0.0385 (0.2498)

—0.0002 (0.0003)
2.1275% (0.7998)
0.9635% (0.3514)
1.49E-06* (2.37E-07)
0.8877* (0.0083)
0.0620* (0.0049)
0.7872* (0.0677)
—0.0560* (0.0191)
0.1055* (0.0306)
0.0854* (0.0171)
0.3177* (0.0731)

Estimated

parameter 1980-89

Ao —0.0004 (0.0009)
y 0.9280* (0.2913)
o 0.8692* (0.2181)
Bo 3.63E-06* (8.535E-07)
I 0.8855% (0.0174)
fa 0.0615* (0.0098)
0 0.5062* (0.1217)
o 0.0029 (0.0269)
oy 0.0476 (0.0455)
o 0.1443* (0.0307)
o3 0.33021 (0.0937)
LogLik 8,218.07

8,651.42

7,882.44

24,698.53
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model, presented in Equation (16), to S&P 500 excess returns. Notice that in this
step, we do not impose any restrictions on 4; and 4,. The following regularities
are observed in this table: First, we observe that once we allow for a dynamic
formulation in conditional mode, we get significant variation in estimated param-
eters across subsamples. Specifically, estimated A; and A, parameters are statis-
tically close in the first two subsamples, but they are significantly larger in the
200009 subsample. We attribute this observation to the prolonged turmoil that
engulfed financial markets during the 2007—09 period. In contrast, events such as
the crash of 1987 typically did not last as long. We believe that this lengthy du-
ration of market instability altered the magnitude of the parameters governing the
dynamics of the model, but did not change the fundamental dynamics. Except for
estimated 4, in 2000-09 subsample, all other reported estimated parameters are
statistically significant across the subsamples, and the absolute values of 4; and
A, are within one standard error of each other within all subsamples and across
the first two subsamples.

As expected, estimated NGARCH parameters, f, to ff, and 0, are statistically
significant, have the expected signs, and the expected sizes. On the other hand, the
picture is more complicated once we study the dynamics of Pearson’s mode
skewness. All the estimated parameters are statistically significant in 1980—89
and 1980-09 samples. However, most of estimated xs are not statistically signifi-
cant in 1990-99 and 2000-09 samples. Some of the regularities observed and
discussed in Section 5.1 and Table II are broadly observed across the subsamples
as well. For example, estimated xs are generally larger than estimated «,s, imply-
ing asymmetry in asymmetry. Estimated 3 parameters, regardless of statistical
significance, are roughly the same size, which is substantially less than 1. This
observation implies low persistence in Pearson’s mode skewness.

In the next step, we recover the structural parameters of DA preferences, by im-
posing the restrictions obtained from Equation (11) on 4, and 1,.'"® We substitute
for 4; and /, in Equation (16) from the analytical solutions in Equation (11). We
report the estimation results in Table I'V. It is immediately obvious that NGARCH
estimated parameters are statistically significant, regardless of the sample used in
estimation. Estimated parameters for Pearson’s mode skewness are all significant
for the full sample, but their statistical significance weakens in subsamples. There is
also considerable variation in size and signs of these parameters across subsamples.
But even with all these concerns, we still observe substantial asymmetry in asym-
metry in Pearson’s mode skewness dynamics.

18 Equation (11) explicitly links A; and 4 to the disappointment aversion parameter, ¢, and the co-
efficient of risk aversion, y, which are the structural parameters in DA preferences. As noted earlier, 4;
and /4, do not depend on §.
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Estimating the restricted model delivers two important contributions. First, it
allows us to recover the structural parameters of DA preferences. We observe
the following in our estimates: First, all estimated structural parameters, o and
y, are statistically significant. Second, there is variation in our estimates across sub-
samples and the full sample. This variation is more pronounced in estimates of the
coefficient of risk aversion, 7. Estimated ys range between 0.9289 in 198089 sub-
sample to 2.1275 for the full sample. These values are within the (0, 10) range that
is generally considered acceptable in the literature; see Mehra and Prescott (1985).
The range of variation is more limited in the estimated disappointment aversion
parameter, o. We observe a range between 0.8326 in 1990-99 to 0.9703 in
2000—09 period. These point estimates are all less than one, which is the main re-
quirement for DA preferences. Estimated values of « based on experimental data in
Choi, Fisman, Gale, and Kariv (2007) imply values in 0.70 to 0.98 range.'® Third,
our estimates imply modest, but persistent, disappointment aversion. The interest-
ing observation here is the time variation in disappointment aversion and risk aver-
sion parameters. We will study this issue in future research.

Second, estimating the restricted model allows us to extract the market price of
risk, implied by time-varying risk—return trade-off defined in Equation (17). The
time-varying market price of risk process is characterized by Equation (13). We are
also interested in the relationship between p, and /If. The top panel in Figure 8
reports the time series of annualized daily values for the market price of risk, com-
puted for S&P 500 excess returns, based on Equation (13). It is immediately clear
that market price of risk is positive. Thus, our findings support the results of Ghy-
sels, Santa-Clara, and Valkanov (2005) and Ludvigson and Ng (2007). However,
we show that the market price of risk is a process with considerable time variation.
The average annualized /": is 0.4401, close to the annual Sharpe ratio computed
from US historical data. The bottom panel of Figure 8 shows the relationship be-
tween the market price of risk and Pearson mode skewness. The sample correlation
between /lj and p; is 0.6435, which implies that the market price of risk decreases
when market asymmetry decreases. Logically, if extreme negative returns are more
likely, an investor would not demand more risk, and this fall in the demand of risk
induces a lower market price of risk. The top panel in this figure shows that the
market price of risk is lower during recessions in our sample. Besides, the bottom
panel of the figure showcases asymmetry in asymmetry of p, process mentioned in
the discussion of Equation (15). The sample contains more frequent large negative
realizations of p, than positive realizations.

19 Choi, Fisman, Gale, and Kariv (2007) use a static formulation for DA preferences and define dis-
appointment aversion parameter in (1, 4+ o) range. We transform their estimated values to the (0, 1)
range studied in this paper. Our specification corresponds to Bonomo ez al. (2011). They also define
the disappointment aversion parameter so that it belongs to (0, 1).
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Figure 8. Relative downside volatility, conditional skewness, and market price of risk

The top panel of this figure displays the time series of market price of risk filtered from S&P 500 data

at daily frequency for January 1980 to December 2009. These values are computed based on A, =
\/7/8

(I=(h —42) e + (A1 — 42)y/1 — (3n/8 — 1)p? equation. The bottom panel in this figure
displays the relationship between A; and p, filtered from S&P 500 data at daily frequency for January
1980 to December 2009.

5.3 BIN-GARCH AND INTERNATIONAL DATA

In the next step, to verify the ability of BIN-GARCH to characterize the excess
return and risk—return trade-off dynamics beyond S&P 500 index, we model daily
MSCI index excess returns for five major international financial markets using
BiN-GARCH. The sample includes Australia, Germany, Japan, Switzerland,
and UK. Thus, it includes members of the Euro zone, representatives from Asia
and Oceania, and two important European markets, Switzerland and the UK, which
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are not Euro members.”’ As mentioned in Section 4, we use MSCI country index
values downloaded from Thomson Reuter’s Datastream. We concurrently estimate
conditional mode, variance, structural parameters, and asymmetry using maximum
likelihood methodology.

Panel A in Table V reports the results from fitting the international data using the
full BIN-GARCH model, presented in Equation (16). Similar to our results reported
in Section 5.2, statistical evidence for existence of a positive linear relationship
between both the conditional mode and downside risk and upside uncertainty is
quite strong. Moreover, estimated parameters have the expected sign, positive
A1 and negative 4,, and their absolute values are generally within one standard error
from each other. These regularities are true across the board for the full sample of
1980-09. These regularities broadly hold within and across the three subsamples of
1980-89, 1990-99, and 2000—09. However, the results within subsamples are not
as strong as the results for the full sample. This may be due to using shorter series
for subsamples. We find these results to indicate significant statistical support for
our model and estimation procedure in the international data.

Panel B in Table V reports the results from fitting the international data, using the
method used in obtaining the results presented in Table IV. Again, our goal is to re-
cover the structural parameters of the DA preferences, by imposing the restrictions
implied by Equation (11)and the analytical solutions linking 4, and 4, to the structural
parameters y and o. Similar to what we see in Sections 5.1 and 5.2, we observe sta-
tistically significant estimates for y and « in the full sample, and reasonable statistical
support within and across the subsamples. There is more variation in estimated values
of y in comparison with estimated values of «. Based on our findings, the Japanese
investor is the most disappointment averse. The full-sample estimated o for Japan is
0.8526, which is considerably lower than 0.9032 observed for Switzerland, the sec-
ond lowest value. Our estimates also suggest that the level of risk aversion, implied by
estimated values of ), is considerably higher in the USA compared with the other
markets studied here. Estimated y forthe USA is2.1275 in the full sample. The highest
value of y in the international data is 1.0191 for Switzerland in the same time period.

Figure 9 shows the behavior of the risk aversion-disappointment aversion coef-
ficient couple, (y, ), in twenty-two financial markets, and over the three time periods.
We estimate these parameters by fitting the restricted version of BiN-GARCH to
MSCI data for the Organisation for Economic Co-operation and Development coun-
tries and S&P 500 data. We do not report all the estimation results to save space; they

20 1n the online appendix, we provide empirical evidence in support of successful fitting of the data
and positive BIN-GARCH risk—return tradeoff for 10 financial markets. Since they are generally sta-
tistically significant and show very little variation across sub-samples, we do not report the estimated
parameters for the volatility process and Pearson mode skewness. Data source is Thomson Reuters
Datastream and MSCI index data.
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Table V. Restricted and unrestricted ML estimation of the BIN GARCH model using international data

This table reports maximum likelihood estimation results of the BiN-GARCH model for five international markets’ daily excess returns. The sample
includes continuously compounded value-weighted returns on country indexes starting on January 1, 1980 and ending in December 31 2009. Standard
errors are given in parentheses. *, 1, and F indicate statistical significance of the estimated parameters at 1%, 5%, and 10% levels, respectively. 4; are
asinm, = Ao + 4101, ,+ 4202, ,. y and o are derived by analytically solving Equation (11), and denote coefficients of risk aversion and coefficients of
disappointment aversion, respectively. Source: Thomson Reuters Datastream.

Panel A: Unrestricted model Panel B: Restricted model
Country  Parameter 1980-88 1990-99 2000-09 1980-09 Parameter 1980-88 1990-99 2000-09 1980-09
Australia 2o 0.0025t (0.0012)  —0.0005 (0.0013) 1.28E-05 (0.0011)  0.0005 (0.0005) Jo 0.0005% (0.0003)  —0.0003 (0.0012)  0.00051 (0.0002) 9.16E-05 (0.0002)
R 0.21301 (0.0856)  0.7797* (0.0966)  0.5252* (0.0865)  0.5012* (0.0553) y 0.0008 (0.0454) 1.0019% (0.0158)  0.0002 (0.0170)  0.9660* (0.0226)
Ja —0.3366* (0.0068) —0.7264* (0.1604) —0.42941(0.1864) —0.4842* (0.0699) o 0.9998* (0.0016) 0.9377* (0.2696) 0.9999* (0.0020)  0.9750* (0.0324)
Log Lik 6,718.80 9,093.35 7,744.29 23,464.38 6,676.80 9,093.28 7,736.85 23,441.19
Germany Jo —0.0020 (0.0012)  —0.0003 (0.0007) 3.80E-04 (0.0006) —0.0002 (0.0005) 2o —0.0018 (0.0011)  —0.0007 (0.0006) 0.0002 (0.0003)  —0.0002 (0.0004)
A 0.4920* (0.1533)  0.9006* (0.0514)  1.0338%* (0.1253)  0.7959* (0.0989) b 10.1301 (41.2002) 0.1186 (3.7939) 0.1406 (0.9781) 1.0150* (0.2286)
o —0.33841 (0.1375) —0.8785* (0.0803) —1.1167* (0.1707) —0.7676* (0.1321) o 0.9018 (1.1654) 0.7856* (0.1492) 0.9998* (0.0091)  0.9433* (0.0911)
Log Lik 6,985.08 8,863.94 7,454.72 23,256.33 6,978.24 8,862.44 7,450.94 23,256.32
Japan 2o —0.0037* (0.0011) —0.0018% (0.0007) —0.0001 (0.0012) —0.0010% (0.0005) 2o —0.0010 (0.0009)  —0.00171 (0.0007) —0.0016 (0.0010)  —0.0008 (0.0005)
I 0.7194* (0.0379)  0.7976* (0.1447)  1.2279* (0.2444)  0.4692* (0.0876) y 11.0943 (21.7951)  1.0411 (0.7848)  1.0640* (0.3385)  0.9847* (0.0614)
o —0.3060* (0.0898) —0.6874* (0.1480) —1.3102* (0.3149) —0.3903* (0.0895) o 0.9012 (0.5814) 0.7666* (0.1100)  0.8034* (0.1577) 0.8526* (0.0874)
Log Lik 7,161.26 8,482.08 7,499.13 23,067.50 7,139.41 8,482.00 7,496.04 23,057.95
Switzerland 2o —0.0003 (0.0012) —0.0018 (0.0011)  3.58E-05 (0.0006) —0.0006 (0.0005) 2o —4.69E-05 (0.0009)  —0.0009 (0.0009) —4.75E-05 (0.0003) —0.0003 (0.0004)
A 0.35171 (0.1671)  0.6313* (0.0915)  0.8828* (0.2605)  0.5543* (0.0786) Y 1.0065 (19.6501) 0.9684* (0.0663) 0.9897* (0.1774)  1.0191* (0.0693)
Ja —0.3219% (0.1699) —0.3655* (0.1222) —0.8905* (0.3060) —0.4466* (0.0910) o 0.9915% (0.5463)  0.7431* (0.1709) 0.9785* (0.0195)  0.9032* (0.0943)
Log Lik 7,302.69 9,249.61 8,092.65 24,611.15 7,296.83 9,243.38 8,092.59 24,603.92
UK 7o 0.0005 (0.0020)  —0.0004 (0.0009)  0.0006 (0.0005)  —0.0001 (0.0004) 7o 8.88E-05 (0.0007) —8.54E-05 (0.0008) —7.77E-07 (0.0002) —0.0001 (0.0003)
. 0.3826% (0.2340)  0.5757* (0.0987)  1.5151 (1.3013)  0.5005* (0.1534) y 0.6458 (3.3655) 0.8501 (0.5580) 0.0110 (0.2816)  1.0015* (0.0062)
Ja —0.3009 (0.3287) —0.4818* (0.1157) —1.7332 (1.5740) —0.43201 (0.1822) o 0.9849* (0.0885) 0.9287* (0.2082) 0.9996 (0.0112)  0.9577* (0.0690)
Log Lik 6,867.49 9,474.77 7,987.76 24,254.38 6,863.80 9,468.09 7,983.64 24,252.54
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Figure 9. Estimated values of coefficients of risk aversion and disappointment aversion across markets
This figure plots the estimated pairs of coefficients of risk aversion (y, on the horizontal axis) and
disappointment aversion (, on the vertical axis) in various markets and across different time periods.
These estimated values are obtained by fitting the data to the restricted BiN-GARCH model, based on
the analytical solution to Equation (12). Source: Datastream and MSCI. Country codes: Australia
(AU), Austria (AT), Belgium (BE), Canada (CA), Denmark (DK), France (FR), Germany (DE),
Greece (GR), Hongkong (HK), Ireland (IE), Italy (IT), Japan (JP), the Netherlands (NL), New Zealand
(NZ), Norway (NO), Portugal (PT), Singapore (SG), Spain (ES), Sweden (SE), Switzerland (CH),
United Kingdom (UK), United State (US).

are available upon request. It is immediately clear that these coefficients vary across
subsamples and over time. For example, y drops in Italy, Germany, and Japan since
1980s, and it increases in the USA over the same period. Also, the DA coefficients, a,
on average, have increased since the 1980-89 period. The dynamics of these coef-
ficients are interesting. We will also address this issue in future research.

To summarize, empirical evidence from the international data support modest
disappointment aversion and variation in risk aversion across countries and across
time. International evidence lends strong statistical support for a positive impact of
downside volatility and a negative impact of upside uncertainty (in other words,
positive impact of relative downside risk) on the conditional mode in the BiN-
GARCH model. Thus, we claim that an empirical study of risk—return tradeoff
necessitates a study of downside risk, time-varying skewness, and modeling the
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price of risk as a process. We believe that our candidate in Equation (13) provides
a good starting point for future research.

5.4 DOWNSIDE VOLATILITY AND HIGH FREQUENCY DATA

At this point, the reader may question how much our results, both theoretical and
empirical, depend on the parametric statistical model developed and used in the
paper. We claim, and provide extensive empirical evidence to support this claim,
that our findings are not dependent on the parametric model used for estimation.
Another legitimate question is whether relative downside risk is in fact a proxy for
other known pricing factors. One such factor that has attracted considerable atten-
tion in recent years in the “variance premium.”*' In this section, we present em-
pirical evidence in support of the claim that relative downside risk is not a proxy for
variance premium (or other similar quantities), but an independent, and one may
even say complementary factor to the variance premium.

We achieve these goals by departing from the parametric framework used so far
in the paper. Instead, we build nonparametric measures of relative downside risk
based on high frequency data for returns. Since one needs good quality high fre-
quency data to carry out what follows, we limit the study of downside volatility and
high frequency data to S&P 500 returns and 1986—09 time period. The most im-
portant of risk measures in this class is the realized volatility, which provides an ex
post measure of volatility. Following Bollerslev, Tauchen, and Zhou (2009), we
construct model-free realized volatility measures, as opposed to options implied
volatilities of Black—Scholes. Many studies in finance and econometrics are de-
voted to realized volatility. Among them, we note Andersen, Bollerslev, Diebold,
and Labys (2001), Andersen, Bollerslev, Diebold, and Labys (2003), Bollerslev
and Zhou (2006), and Bollerslev, Tauchen, and Zhou (2009). This list is by no
means exhaustive.

We construct our measures following the common practice in the realized vol-
atility literature by summing up finely sampled squared return realizations over
a fixed time interval,

ny
RV, = er%t’ (19)
j=1

2! Variance premium is the difference between “model-free” implied and realized variances; see
Bollerslev, Tauchen, and Zhou (2009).
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Table V1. Evaluating the conditional relative downside variance: mincer-zarnowitz regressions

This table reports the results of running Mincer and Zarnowitz (1969) regressions for realized
downside volatility against conditional downside volatility: RV¥,, (k) — RVY, (h) = ¢, +

@ (Var?[R.y1] — Var“[R,;,] for 1986-09 S&P 500 data. & denotes sampling frequency in minutes.
Standard errors are reported in parentheses. *represents statistical significance at 5% or better

confidence level. Source: Thomson Reuters Datastream.

h 5 10 15 20 30 60
$o  —450E—05*  —336E—05*  —149E—05*  —6.42E-06  —3.75E—06 1.20E—06
(4.29E—06) (3.43E—06) (2.76E—06) (227E—06)  (2.05E—-06)  (1.98E—06)
b 2.631% 2.235% 1.583* 1.286* 1.199% 1.035*
(0.045) (0.036) (0.029) (0.024) (0.021) (0.020)
R 0.370 0.400 0.340 0.331 0.340 0.300

where there are n, high frequency returns in period ¢, and r;, is the the jth high
frequency return in period . We also construct the realized downside and upside
variance series as

n, s
d ny 5 _ n 2 _
RV[ = n_d E I"jJI(rj’t < n/lt), RV’; - ﬁ 5 rj,t <rj7l‘ 2 mt)? (2’0)
t j:]

l‘j:]

where n¢ and n" are, respectively, the number of high frequency returns below and
above the mode of return, 7, in period ¢, and where /() denotes the indicator func-
tion. Following Bollerslev, Tauchen, and Zhou (2009), we construct realized up-
side and downside variance measures for daily, monthly, and quarterly periods.

In the first step, we study the ability of our parametric downside risk measure to
forecast the realized relative downside risk. This step is motivated by Andersen and
Bollerslev (1998). In particular, they show that since E,(RV,;) ~ Var,(R,;), re-
alized volatility provides an easy to evaluate measure of return volatility through
Mincer and Zarnowitz (1969) regressions. We use the same logic to develop an
evaluation framework for realized measures, constructed following Equation
(20) as forecasts for upside and downside volatility, using Mincer—Zarnowitz
regressions. Formally, we fit**

RVY ((h) —RVY, ((h) = ¢y + @, (Varf[r41] — Var[rii1]) + €41. (21)

The Mincer—Zarmowitz framework implies that if the right-hand side variable is
a good predictor of the left-hand side variable, then ¢y = 0 and ¢p; = 1. The em-
pirical results for S&P 500 data are presented in Table 6. The following is imme-
diately obvious: the intercept parameters become less statistically significant as we
increase the sampling frequency. This result is not surprising. In 5- to 10-minute

2 Vard[r,s1] and Vart[r,.] are defined by Equation (5).
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frequency, data may be contaminated by market microstructure noise. As the fre-
quency of sampling decreases, the importance of microstructure noise declines, and
we observe more “efficiency” in the Mincer—Zarnowitz sense. Similarly, while all
slope parameters are statistically significantly different from zero, we cannot reject
the null hypothesis of ¢ = 1 for small values of 4. Thus, these regressions imply
that for data sampled at moderate high frequencies such as 20, 30, or 60 minutes,
our parametric model is an almost perfect predictor for nonparametric ex post
realized downside risk measures. Given the reasonably high R? values of these
regressions, we can confidently claim that our parametric measure explains at least
one-third of the variation in the nonparametric realized downside volatility.

This, in our opinion, is a significant contribution to the empirical asset pricing
literature. Since the work of Hansen (1994), many studies have tried to propose
a model for time varying conditional skewness. However, a testing procedure
to evaluate the validity of competing specifications proved to be elusive. We be-
lieve that we provide this crucial tool since relative downside risk is driven by con-
ditional skewness. Testing for validity of Equation (21) is in fact a test for validity
of our specification of conditional skewness.

Next, we empirically study the relationship between (realized) relative downside
volatility and the variance premium. We use the formulation and methodology in-
troduced by Bollerslev, Tauchen, and Zhou (2009) for computing the variance pre-
mium in S&P 500 returns. We then fit the following models to returns:

Ei(ris1) —rrap1 = 40 + 4RV + LRDV,, (22)
Bi(ri41) —rps1 = 40 + RV, + 13VRP, (23)
Ei(ri+1) —rriv1 = 40 + 4RV, + L,RDV, + J3VRP, (24)

where [E(r;+1) — 77,41 represents excess returns over the 3-month Treasury Bill
rate, RV, is defined in Equation (19), RDV, is the nonparametric measure of relative
downside risk defined earlier, and VRP, is the variance risk premium.

We refer to Equations (22—24) as Model I to Model III in Table VII, where we
present the empirical results. The table shows that regardless of the model, the in-
tercept parameter, Ao is generally not statistically significant. The estimated coef-
ficient for relative downside volatility, 4, is statistically significant and positive in
both Models I and III. The estimated variance premium coefficient is slightly less
stable. The expected positive sign turns negative at the quarterly level in both
Model II and III. The realized variance coefficient also demonstrates a similar pat-
tern. At the quarterly level, the realized variance coefficient is statistically signif-
icant for Models I and III but has a negative sign for all three models. This problem
is limited to quarterly regressions and is not present for the other regressions.
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Table VII. Relative downside volatility and the variance premium

This table presents the empirical results for fitting S&P 500 returns to the following three models. Model LI By (r141) — 7711 = 5,0 + ;11V2~1r, [R+1]
+4,RDV,, Model II: Et(rt+1) —If4l = Ao + A1 Var, [Rt+1} + A3 VRP,, and Model I1I: E,(i’,+1) —Ifl = Ao + A1 Var, [RHI} + 4,RDV; + A3 VRP,,
where 7y, is the 3-month T-Bill rate, RDV, is the relative realized downside volatility, and VRP, is the variance risk premium, defined and computed as
in Bollerslev, Tauchen, and Zhou (2009). R is the adjusted R>.

Model 1 Model 1I Model III
Parameter Daily Monthly Quarterly Daily Monthly Quarterly Daily Monthly Quarterly
2*0 —3.272E-04 (2.325E-04)  0.0062 (0.0017) 0.0051 (0.0083)  —0.0008 (0.0005) 0.0007 (0.0026) —0.0205t (0.0073) —0.0007 (0.0006) 0.0056% (0.0026) 0.0199 (0.0107)
P 1.9523 (1.2666) 3.6947% (1.9107) —5.4935t (2.0375) 7.5008* (1.2025) 6.0802* (1.7890) —0.2752 (1.2048) 5.3101* (1.3267) 3.5880% (1.9449) —5.3509* (2.0134)
/2 7.3190* (0.8913) 10.1856* (0.8559)  5.4750* (0.7770) 6.8169* (0.8914) 10.1188* (0.8852)  5.8184* (0.7565)
4.8378* (0.5340) 4.5465* (1.2873) —0.0671 (1.0284)  4.4239* (0.5468)  0.4050 (1.3679) —2.76301 (1.2248)
R 0.0172 0.0285 0.0751 0.0096 0.0270 0.0528 0.0175 0.0344 0.1299
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Another interesting pattern is discernible in the reported adjusted R* measures
(Rz) in Table VIL They increase, regardless of the model, once we move from daily
to quarterly frequency, which is not surprising. On the one hand, we notice that R*s
for Model I are larger than R’s s from Model II at the same frequency, for instance,
the daily R for Model Iis 0.0172, while Model II has R equal to 0.0096, and for
monthly frequency, R* for Model T is 0.0285 and R for Model II is 0.0270. This
may mean that RDV, has more power in explaining the Varlatlons in excess returns
compared to VRP, in Model H On the other hand, reported R for Model Tl is very
close to the sum of reported R’s for Models T and II. This observation is particularly
visible at the quarterly level. We interpret this observation as evidence against the
usual increase in R~ accompanied by adding more regressors, and as evidence in
favor of the power of relative downside risk as a pricing factor. Adding the variance
premium factor to Model I does very little in terms of changing the size and sign of
estimated 4;s s in Model I1I. We interpret this observation as evidence against the
assertion thatrelative downside volatility might be a proxy for the variance premium.

6. Concluding Remarks

In this paper, we introduce a new methodology for assessment and study of the
risk—return trade-off in S&P 500 excess returns and in international equity markets.
We propose a discrete-time dynamic model of asset prices with binormal return
innovations: the BiN-GARCH model, which nests the canonical NGARCH model.
Using an intuitive endowment and representative agent equilibrium model, we
show that demand for relative downside risk compensation arises in familiar the-
oretical settings with only the assumption that the agent distinguishes between
downside and upside risk in the market. We then test our theoretical model using
annualized daily index excess returns from five international equity markets and the
S&P 500 index.

Our study suggests strong empirical support for the four main assertions in this
paper. We find that: First, there exists relative downside risk in equity markets,
which is compensated through an increase in the conditional mode of returns. Sec-
ond, the relationship between relative downside risk and the conditional mode is
positive. Third, we establish that conditional skewness is a priced factor. Fourth, we
find evidence suggestive of time variation in structural parameters of disappointment
aversion preferences. Furthermore, our empirical results support a positive value for the
time-varying market price of risk in the markets studied. This last result is due to the
characteristics of the estimated volatility spillover parameters in the conditional mode
and conditional market asymmetry measures. In this sense, our findings provide addi-
tional support for studies such as Ghysels, Santa-Clara, and Valkanov (2005),
Ludvigson and Ng (2007), and particularly, Rossi and Timmermann (2009).
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We have not visited the existence of common or country-specific factors across
markets that influence risk premia. Neither have we investigated the existence, dif-
ferences, or factors affecting time variation of effective risk aversion across coun-
tries. We will address these questions in our future research.
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