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Abstract

We introduce a new measure for the premium associated with stock return uncer-

tainty fluctuations, termed the quadratic risk premium (QRP), like the variance risk 

premium (VRP). Empirical measurement of VRP in the literature does not always con-

form with the premium definition as the difference between risk-neutral and physical 

expectations of the same quantity. We quantify significant biases due to this incon-

sistency. In contrast, our QRP measure is consistent, robust and unbiased. We then 

decompose the QRP into its gain and loss components and find that both display a 

large heterogeneity and are significantly priced in the cross-section of stock returns.
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1 Introduction

Economists would agree that the loss and the gain are the main attributes of an invest-

ment return. Bernardo and Ledoit (2000) define the loss l and the gain g as magni-

tudes of the nonpositive and the nonnegative parts of the return r, respectively, that is,

l = max (−r, 0) and g = max (r, 0). The ex ante perceptions of the potential loss and gain

not only determine the attractiveness of an investment opportunity but they are also rele-

vant for its relative valuation. The loss uncertainty characterizes the risk of the return being

negative, or the uncertainty about the amplitude of the loss. Similarly, the gain uncertainty

characterizes the potential of the return being positive, or the uncertainty about the size of

the gain.

In this paper, we first introduce a new measure for the premium related to fluctuations in

the asset return uncertainty, termed quadratic risk premium (QRP), which we define as the

risk-neutral minus physical expectation of the quadratic payoff, i.e., QRP ≡ EQ [r2]−E [r2].

The gain-loss decomposition of the asset return naturally leads to the premia associated

with fluctuations in the loss uncertainty and the gain uncertainty, called the loss QRP and

the gain QRP, respectively. Our empirical measurement and estimation of the loss and gain

QRPs are consistent with a premium definition as the difference between the risk-neutral and

physical expectations of the same quantity. More precisely, we define the loss QRP as the

risk-neutral minus physical expectation of quadratic loss, i.e., QRPl ≡ EQ [l2]−E [l2], so that

the loss QRP is positive for investors who are typically averse to fluctuating loss uncertainty.

Risk averse investors thus pay the loss QRP to hedge extreme losses in bad times. To the

contrary, we define the gain QRP as the physical minus risk-neutral expectation of quadratic

gain, i.e., QRPg ≡ E [g2] − EQ [g2], so that the gain QRP is positive for investors who are

typically averse to fluctuating gain uncertainty. Risk averse investors thus receive the gain

QRP to compensate for weak upside potential in bad times.

A popular measure of the premium for bearing fluctuating uncertainty is the variance
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risk premium (VRP). In previous literature, VRP has been examined for the aggregate

stock market’s time series predictability (e.g., Bollerslev, Tauchen, and Zhou, 2009, Boller-

slev, Marrone, Xu, and Zhou, 2014, Feunou, Jahan-Parvar, and Okou, 2018 and Kilic and

Shaliastovich, 2019) as well as for the cross-sectional predictability (e.g., Han and Zhou,

2011). However, there is a lack of coherency in the literature as to how to accurately esti-

mate and measure VRP and its loss and gain components. While the physical expectation

of realized variance is consistently estimated using an appropriate time series forecasting

model, its risk-neutral expectation is, in general, estimated via a Bakshi, Kapadia, and

Madan (2003)-like formula which corresponds to the risk-neutral expectation of quadratic

payoff. As a result, the estimated VRP in previous studies does not conform with a premium

definition. This measure is biased unless the quadratic payoff and the realized variance are

equal. We quantify the significance of this bias by using the S&P 500 daily and intra-daily

return data. Furthermore, we show that the loss and gain components of the quadratic payoff

are significantly different from their counterparts for the realized variance (the so-called semi-

variances). Other types of bias related to the measurement of risk-neutral second moments

of returns and in connection with the options-implied volatility index (VIX) are discussed

by Andersen, Bondarenko, and Gonzalez-Perez (2015) and Martin (2017). In this paper, by

focusing on QRP and its components, we can maintain the premium definition and be free

from this significant bias between the realized variance and the quadratic payoff.

Next, we argue that an asset’s premium must reflect its loss QRP and gain QRP. Our

reasoning is as follows. An asset with larger loss QRP is unattractive because a higher loss

QRP reflects more severe downside risk in bad times. Likewise, an asset with larger gain

QRP is unattractive because a higher gain QRP means weaker gain potential in bad times.

Since investors are sensitive to fluctuations in loss (gain) uncertainty, they would require a

higher premium for holding assets with higher loss (gain) QRP. Those assets will in turn pay

higher returns on average.

We empirically explore our cross-sectional predictions using stock and option data for the
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U.S. from January 1996 to December 2015. To measure risk-neutral expectations, we exploit

results from Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003) to prove

that the risk-neutral expected quadratic loss (gain) can be recovered from the market prices

of out-of-the-money European put (call) options. Option data are used to implement these

formulas. A conditional log normality of returns is assumed to derive analytical formulas for

the physical expectations of quadratic gain and quadratic loss. A variant of the heterogenous

autoregressive model of the realized volatility (HAR-RV) of Corsi (2009) is used to estimate

the conditional variance and the same information set is used to estimate the conditional

mean of log returns. Stock data are used to implement physical expectations formulas. Our

measures for the loss and gain QRPs are the appropriate difference between the corresponding

risk-neutral and physical expectations.

In our main cross-sectional tests, we use portfolio sorts based on each firm’s QRP com-

ponents (i.e., the loss and gain QRPs), controlling for exposures to frequently investigated

market factors and other firm characteristics. Across firms, we find a wide dispersion in

QRP components which generates cross-sectional variations in asset premia. We find strong

evidence that the QRP components are positively related to expected excess returns in the

cross-section. Specifically, simultaneously going long a portfolio of firms with high loss QRP

and short a portfolio of firms with low loss QRP yields a monthly expected excess return of

0.88%, risk-adjusted using the five-factor model of Fama and French (2015). Likewise, we also

find that the gain QRP has a strong positive and significant relation with monthly expected

stock returns. The long-short portfolio has a five-factor alpha of 1.30% per month.1 Since

the two QRP components have similar effects in the cross-section, and QRP is by definition

the difference between its two components (we also refer to QRP as the net QRP), this po-

tentially explains why we find no evidence of a relation between (the net) QRP and monthly

expected stock returns. Thus, decomposing the QRP into its loss and gain components is

clearly very informative. We run Fama and MacBeth (1973) cross-sectional regressions with

1These spreads are of similar size to previous literature such as the asset growth anomaly (Cooper, Gulen,
and Schill, 2008), or the idiosyncratic volatility puzzle (Ang, Hodrick, Xing, and Zhang, 2006).
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individual stocks as test assets to estimate risk prices associated with the QRP components.

Cross-sectional regression results confirm that the QRP components provide significant ex-

planatory power for the variation of monthly expected stock returns beyond traditional asset

pricing risk factors and firm characteristics. Our estimates suggest that, everything else be-

ing equal, the QRP components are economically important that a one standard deviation

increase in loss (gain) QRP is associated with a rise in monthly expected excess returns

between 0.85% and 1.28% (1.33% and 1.67%) in the cross-section.

Our paper mostly contributes to the literature on the cross-sectional implications of

downside risk (e.g., Ang, Chen, and Xing, 2006; Lettau, Maggiori, and Weber, 2014; Farago

and Tédongap, 2018). Our measure for downside risk, the loss QRP corresponds to the

specific cost to insure against undesirable fluctuations in a firm’s loss uncertainty. Since we

use the quadratic payoff rather than the payoff itself, the loss QRP partly represents a firm’s

return squared exposure or squared beta relative to market-wide factors, but also partly

represents firm characteristics related to the idiosyncratic variance or the jump variation

of the returns. Empirical tests and evidence in Daniel and Titman (1997, 2012) support

our approach of measuring the downside risk through a firm’s specific characteristic rather

than its factor exposure. Thus, our paper is related to Xing, Zhang, and Zhao (2010) and

Yan (2011) who show that the firm-level implied volatility smirk (an option-based measure

of downside risk) has a strong predictive power for expected stock returns. It also relates

to Bollerslev, Li, and Zhao (2020) who find that the signed jump variation (defined as the

standardized difference between the gain and loss realized variances) is significantly related to

expected stock returns, and Huang and Li (2019) who investigate the risk-neutral counterpart

of the signed jump variation. In our empirical analyses, we control for the implied volatility

smirk and the signed jump variation, as well as multivariate exposures to the generalized

disappointment aversion (GDA) factors of Farago and Tédongap (2018), and find that the

loss and gain QRPs still have significant positive relationships with expected stock returns

in our sample. Besides that, our result regarding the gain QRP shows that the upside risk
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is significantly and robustly priced even after controlled for the downside risk. Since there is

little evidence in the literature about the pricing of the upside risk, our findings on the gain

QRP constitute an important new contribution.

Our results also appear useful for understanding important asset pricing anomalies put

forward in the recent literature. Stambaugh, Yu, and Yuan (2015) find that idiosyncratic

volatility is negatively priced among overpriced stocks, and this cross-sectional predictability

is the highest among overpriced stocks that are also difficult to short. Similarly, we find that

idiosyncratic volatility is significantly negatively priced only among stocks with low loss

QRP, and within this group, its cross-sectional predictability is the highest among stocks

with low gain QRP. Stocks with low loss QRP are preferred by the investors because they

have small downside risk in bad times. Thus investors’ extra demand leads to the relative

overpricing of these stocks. Further, among stocks with low loss QRP, those with low gain

QRP have large upside potentials in bad times, thus are more desirable and shorting them

may be risky and very costly. Taken together, these results corroborate and extend, using our

downside and upside risk measures, the arbitrage asymmetry and arbitrage risk explanations

of the idiosyncratic volatility puzzle in Stambaugh, Yu, and Yuan (2015) for a large sample

of optionable stocks.

Our results finally evidence that cross-sectional predictability of the loss and gain QRPs

is not uniform across all categories of stocks, i.e., it is significantly stronger for certain types

of stocks relative to others. This suggests that a particular characteristic may be essential for

understanding why certain stocks are more predictable by the QRP components in the cross-

section relative to others. In particular, we find that the cross-sectional predictability of the

loss and gain QRPs is the strongest among firms for which illiquidity may prevent rational

arbitrageurs from exploiting existing arbitrage opportunities. Likewise, we find that as the

diffusion of firm-specific information increases, as proxied by the number of analysts covering

the stock, the predictability of both the loss and gain QRPs decreases. These results suggest

that the predictability of the loss and gain QRPs is in part driven by limits to arbitrage and
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information asymmetry. We also find evidence that the cross-sectional predictability of the

gain QRP is in part driven by the demand for lottery, as proxied by the MAX measure of

Bali, Cakici, and Whitelaw (2011).

The rest of the paper is organized as follows. Section 2 introduces and motivates QRP

and discusses its relation with VRP. Section 3 discusses the methodology used to estimate

individual firm QRP components. Section 4 discusses the data and presents descriptive

statistics of the key measures. In Section 5, we investigate the cross-sectional relationship

between QRP components and expected stock returns. Section 6 discusses possible ways

for explaining and understanding our findings. Section 7 concludes. An Internet Appendix

available on the authors’ webpages contains details on analytical proofs, data sources and the

measurement of factor exposures and firm characteristics, as well as results and illustrations

that are omitted for brevity.

2 Theory and Motivation

In this section we formally define QRP and its gain and loss components, which we then

compare to VRP and its components. In the case of a monthly horizon, the quadratic payoff

is the squared log return over a month, while the realized variance is the sum of squared daily

(or higher frequency) log returns within a month. Although both are valid nonparametric

measures of stock return uncertainty, the quadratic payoff may be very different from the real-

ized variance and we formally illustrate their difference. This difference is more pronounced

between the loss and gain components of the quadratic payoff (called quadratic loss and

gain, respectively) and their counterparts for the realized variance (called semi-variances).

Consequently, the realized semi-variances cannot be substituted by the quadratic loss and

quadratic gain when measuring the VRP components.
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2.1 Quadratic Risk Premium: Decomposition and Interpretation

We introduce QRP, the difference between the risk-neutral and physical expectations of

quadratic payoff (squared log return). Formally, denote rt−1,t the monthly realized (log)

return from end of month t− 1 to end of month t. The quadratic payoff is simply r2
t−1,t, and

is a measure of fluctuating uncertainty over the monthly period. Risk-averse investors dislike

fluctuating uncertainty because large fluctuations may lead to high uncertainty levels, which

in turn may result in losses.

The QRP can be interpreted as the net outflow of a risk-averse investor in a quadratic

swap market. In theory, an investor who dislikes fluctuating uncertainty would be willing to

swap it for a fixed amount. We can define the quadratic strike as the fixed amount an investor

would request against fluctuating quadratic payoff. To the best of our knowledge, quadratic

swap markets do not exist. Thus being able to compute the quadratic strike of an asset

from available data provides an assessment of the insurance cost for hedging its fluctuating

uncertainty. On the other hand, since measuring uncertainty through the realized variance

is common in the literature, we can also consider a variance swap market. In this market,

risk-averse investors can swap the variance for a fixed amount, called the variance strike,

which is directly observable for a minority of stocks that have functioning variance swap

markets. For the majority of stocks, however, the variance strike has to be estimated. We

choose to use the quadratic payoff to measure uncertainty and QRP as the net insurance

cost because the estimation of the quadratic strike is feasible using option data, while the

variance strike is not (see Section 3.1 for details).

The QRP is positive on average because investors are typically risk-averse and dislike

fluctuating uncertainty. Risk-averse investors swapping the strike against the fluctuating

uncertainty will be better off if the uncertainty level turns out to be largely above the strike

paid. For the privilege of savoring this outcome in hard times when the marginal utility is

high, investors would be willing to pay an insurance cost. The strike minus the (physical)

expected uncertainty level would be positive, thus representing the positive QRP. Since a
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swap has zero net market value at inception, the no-arbitrage condition dictates that the

strike is equal to the risk-neutral expected uncertainty level. We formally define QRP as

follows:

QRPt ≡ EQ
t

[
r2
t,t+1

]
− Et

[
r2
t,t+1

]
= Covt

(
Mt,t+1, r

2
t,t+1

)
,

(1)

where Et [·] denotes the time-t physical conditional expectation operator, EQ
t [·] denotes the

time-t conditional expectation operator under some risk-neutral measure Q, Mt,t+1 is the

state price density used to price assets between time t and time t + 1, and Covt (·, ·) is the

time-t physical conditional covariance operator.

Equation (1) shows that the QRP is fully characterized by the systematic risk of the

quadratic payoff. Notice however that the QRP is not free from the idiosyncratic volatility

as usually understood. Indeed, the firm returns can be written as rt,t+1 = βt (Mt,t+1) +

εt+1 where βt (Mt,t+1) = Et [rt,t+1 |Mt,t+1] is the systematic component of the returns,

and εt+1 is the idiosyncratic component of the returns with Et [εt+1 |Mt,t+1] = 0. Let

ϑt (Mt,t+1) denote the variance of εt+1 conditional on Mt,t+1, that is, Et
[
ε2
t+1 |Mt,t+1

]
=

ϑt (Mt,t+1), i.e., ϑt (Mt,t+1) is the idiosyncratic variance of the returns. It follows that

QRPt = Covt (Mt,t+1, β
2
t (Mt,t+1)) +Covt (Mt,t+1, ϑt (Mt,t+1)). This shows that, even though

the QRP is free from idiosyncratic risk of the quadratic payoff, it is not free from the idiosyn-

cratic volatility of the return (the payoff itself). Instead, the QRP is partly characterized by

the idiosyncratic variance of the returns and related firm characteristics.

We now decompose the asset return r and the quadratic payoff r2 into a gain and a loss

component as follows:

r = g − l and r2 = g2 + l2, where g = max (r, 0) and l = max (−r, 0) , (2)

where g and l represent the gain and the loss, respectively. In this decomposition, the
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gain and the loss are nonnegative amounts flowing in and out of the investor’s wealth, and

they represent the magnitudes of the nonnegative and nonpositive parts of the asset payoff,

respectively. Since the positive gain and the positive loss cannot occur simultaneously, we

have that g · l = 0. This gain-loss decomposition of an asset’s payoff is exploited as an asset

pricing approach by Bernardo and Ledoit (2000). Since a typical investor prefers a large gain

g and a small loss l, the gain uncertainty (measured by the quadratic gain g2) thus appears

as a good uncertainty while the loss uncertainty (measured by the quadratic loss l2) is a bad

uncertainty. These views are consistent with the literature documenting that good and bad

variances are not equally undesirable by investors.2

Just as the return uncertainty fluctuates, its two components, the loss uncertainty and

the gain uncertainty, do too. Investors are typically averse to fluctuating loss uncertainty

because large loss fluctuations may lead to strong loss uncertainty levels and extreme losses.

They would typically be willing to swap this fluctuating quadratic loss against a strike higher

than the expected quadratic loss — pay a positive loss QRP — to enjoy being better off in

bad times when the quadratic loss significantly outperforms the strike. Likewise, risk-averse

investors dislike fluctuating gain uncertainty because large fluctuations may lead to weak

uncertainty levels and poor gain potential. Therefore, investors would typically be willing to

swap fluctuating quadratic gain against a strike lower than the expected quadratic gain —

require a positive gain QRP — to endure being worse off in bad times when the quadratic

gain significantly falls below the strike.

2For example, Markowitz (1959) advocates the downside semi-variance (i.e, the bad variance) as a measure
of a stock’s downside risk, instead of the total variance, because the latter also accounts for the upside semi-
variance (i.e, the good variance), which measures the gain potential of a stock. More recently, Feunou,
Jahan-Parvar, and Tédongap (2013), Bekaert, Engstrom, and Ermolov (2015), and Segal, Shaliastovich, and
Yaron (2015) find that expected excess returns are positively (negatively) related to the bad (good) variance.
This suggests that investors are averse to the increases in the bad variance yet they also desire increases in
the good variance.
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Consistent with these views, we define the loss QRP and the gain QRP as follows:

QRPl
t ≡ EQ

t

[
l2t,t+1

]
− Et

[
l2t,t+1

]
and QRPg

t ≡ Et
[
g2
t,t+1

]
− EQ

t

[
g2
t,t+1

]
= Covt

(
Mt,t+1, l

2
t,t+1

)
= Covt

(
−Mt,t+1, g

2
t,t+1

)
,

(3)

so that they are positive if uncertainty levels tend to move adversely in hard times when the

average investor’s marginal utility Mt,t+1 is high.3 Thus, using the gain-loss decomposition

of the quadratic payoff in equation (2), the (net) QRP in equation (1) may be written as:

QRPt = QRPl
t −QRPg

t . (4)

Equation (4) shows that the (net) QRP represents the net cost of insuring fluctuations in

loss uncertainty, that is the premium paid for the insurance against fluctuations in loss un-

certainty net of the premium earned to compensate for the fluctuations in gain uncertainty.4

2.2 The Cross-Section of Quadratic Risk Premium and Expected

Stock Returns

We can measure QRP at the aggregated market level or the disaggregated firm-level. For

either the market or firm-level, by definition, the QRP has a premium interpretation as

evident in equation (1). Although the state price density Mt,t+1 in this equation is free from

the linear factor-based specification, we can still use the linear framework to illustrate the

intuition. In the linear case where Mt,t+1 is assumed to be a linear combination of various

systematic factors, equation (1) would relate QRP to the weighted sum of the covariances

3The pricing kernel Mt,t+1 is equal to the growth in the marginal value of the investor’s wealth (Cochrane,
2005).

4In a long-run risk model, Held, Kapraun, Omachel, and Thimme (2018) compute the two components
of QRP (which they refer to as the premia on second semi-moments) of the aggregate stock market and
confirm that the loss and gain QRPs as defined in equation (3) are positive. This illustrates that, for
an asset for which the uncertainty moves together with the average investor’s marginal utility, the cost of
insuring against fluctuations in loss uncertainty exceeds the compensation for being exposed to fluctuations
in gain uncertainty, and QRP measures by how much.
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between the stock’s quadratic payoff and each of these systematic factors.5 This suggests

that, at the firm-level, the idiosyncratic component of the quadratic payoff that is orthogonal

to the systematic factors is not accounted for by its QRP. In light of equation (3), this is also

the case for the loss and gain QRPs which means that our measures of downside and upside

risk are free of the idiosyncratic risk in the quadratic loss and gain, respectively, but are

still determined by the idiosyncratic volatility of returns. Also, since our risk measures are

not exposures of excess returns themselves (but rather the quadratic payoff) onto systematic

factors, nor are they obtained as betas through times series regressions, they can be viewed as

characteristics similar to size, book-to-market, momentum, or idiosyncratic volatility. Daniel

and Titman (1997, 2012) favor such a methodological approach.

To provide the theoretical predictions of the cross-sectional relation between the individ-

ual stock QRP components and expected excess returns, we consider the risk-reward point

of view. Since investors dislike assets with higher downside risk, they should require higher

expected returns for holding those assets. The downside risk of an asset measured by its fluc-

tuating loss uncertainty is undesirable as large fluctuations may lead to strong uncertainty

levels and extreme losses. The positive loss QRP paid by investors is to insure against this

downside risk in bad times. Since this insurance premium increases as the degree of damage

increases in bad times, assets with high loss QRP must command higher expected excess

returns in the cross-section.

A similar reasoning applies to the gain QRP. Since investors dislike assets with higher

upside risk, they should require a higher expected return for holding them. An asset’s upside

risk measured by its fluctuating gain uncertainty is undesirable because large fluctuations

may lead to weak uncertainty levels and poor gains. The positive gain QRP is required by

5With a set of identified factors, equation (1) can be formally tested to determine whether the cross-
sectional differences in QRP across stocks are explained by the cross-sectional differences in exposures of
the quadratic payoff on the systematic factors. González-Urteaga and Rubio (2016) address this issue in
the case of the variance risk premium by using selective groups of systematic factors including the market
return together with the squared market return, and the market variance risk premium together with the
default premium (calculated as the difference between Moody’s yield on Baa corporate bonds and the ten-
year Treasury bond yield). Their findings suggest that the market variance risk premium and the default
premium are key factors explaining the average variance risk premium across stock portfolios.
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investors to compensate for this low upside potential in bad times. Since this compensation

increases as the degree of shrink in gains increases in bad times, assets with high gain QRP

must command higher expected excess returns in the cross-section.

In Section 5, we present the empirical results of the cross-sectional relation between

individual stock loss and gain QRP and expected excess returns.

2.3 Relation with the Variance Risk Premium

We next discuss the relation between QRP and VRP. Both QRP and VRP share the premium

definition but they regard different measures of uncertainty: the quadratic payoff versus the

realized variance. Therefore, the difference between QRP and VRP hinges on the difference

between the quadratic payoff and the realized variance. For a given stock, we observe returns

at regular high-frequency time intervals of length δ. The monthly realized return rt−1,t

and the monthly realized variance RVt−1,t are defined by aggregating rt−1+jδ and r2
t−1+jδ,

respectively:

rt−1,t =

1/δ∑
j=1

rt−1+jδ and RVt−1,t =

1/δ∑
j=1

r2
t−1+jδ, (5)

where 1/δ is the number of high-frequency returns in a monthly period, e.g., δ = 1/21

for daily returns and rt−1+j/21 denotes the jth high-frequency return of the monthly period

starting from day t− 1 and ending on day t. The quadratic payoff and the realized variance

are related as follows:

r2
t−1,t = RVt−1,t + 2RAt−1,t, where RAt−1,t =

1/δ−1∑
i=1

1/δ−i∑
j=1

rt−1+jδrt−1+jδ+iδ, (6)

and RAt−1,t is the realized autocovariance.

The realized variance is a measure of fluctuating uncertainty based on higher-frequency

returns, while the quadratic payoff is a measure of fluctuating uncertainty based on lower-

frequency returns. Equation (6) shows that the quadratic payoff is approximately equal to
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the realized variance if and only if the realized autocovariance is negligible. To examine

whether this is the case, we take daily S&P 500 index return data as an example. In Panel A

of Figure 1, we plot the monthly realized autocovariance of the index in squared percentage

unit from January 1996 to December 2015. This figure shows that the realized autocovariance

is negative 71.25% of the time with the 95% confidence interval equal to [69.27%, 73.23%],

thus the quadratic payoff is frequently smaller than the realized variance. To further prove

that the realized autocovariance is non-negligible, we standardize it by computing its ratio

relative to the average of the quadratic payoff and the realized variance. In Panel B of Figure

1, we plot the monthly standardized realized autocovariance. We find that its absolute value

averages to 0.51 in our sample; thus, the realized autocovariance represents on average about

50.90% (with the 95% confidence interval equal to [49.58%, 52.23%])— a sizeable portion of

the uncertainty level.

The realized variance computed from daily returns may contain considerable noise. To

non-parametrically correct this bias, prior studies advocate the use of high-frequency intra-

day return data. Therefore, we use 5-min intra-day and overnight returns to compute an

alternative measure of the realized variance. Results are available in Figure B1 in the Internet

Appendix. In summary, the realized autocovariance is negative 67.08% of the time with

the 95% confidence interval equal to [61.14%, 73.03%], thus the quadratic payoff is again

frequently smaller than the realized variance, but to a slightly lesser degree. We also find

that the standardized RA’s absolute value averages to 0.50; thus, the realized autocovariance

represents on average about 49.99% (with the 95% confidence interval equal to [46.13%,

53.86%]) — again a sizeable portion of the uncertainty level.

To study the difference between QRP and VRP, we adopt the theoretical definition of
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VRP in Bollerslev, Tauchen, and Zhou (2009) as follows::

VRPt ≡ EQ
t [RVt,t+1]− Et [RVt,t+1]

=

1/δ∑
j=1

(
EQ
t

[
r2
t−1+jδ

]
− Et

[
r2
t−1+jδ

])
.

(7)

In the empirical exercises of the VRP literature, the risk-neutral expectation of quadratic

payoff EQ
t

[
r2
t,t+1

]
is often used to proxy for the risk-neutral expected realized variance

EQ
t [RVt,t+1]. This is, for example, the case in Feunou, Jahan-Parvar, and Okou (2018) and

Kilic and Shaliastovich (2019). By doing so, they use an empirical measure of the variance

risk premium ṼRPt defined by:

ṼRPt = EQ
t

[
r2
t,t+1

]
− Et [RVt,t+1]

= VRPt + 2EQ
t [RAt,t+1] .

(8)

By definition, ṼRPt is not a coherent measure of a risk premium (i.e., it is not the difference

between the risk-neutral and physical expectations of the same quantity). Instead, ṼRPt is

a biased measure of VRPt, where the bias equals 2EQ
t [RAt,t+1]. Furthermore, this bias is

not necessarily negligible. As shown in panels A and B of Figure 1, RAt,t+1 of the S&P 500

index is non-negligible and mostly negative through time. We then cannot reasonably argue

that the bias 2EQ
t [RAt,t+1] or the difference between VRP and ṼRPt is negligible. While

we provide an illustration in the case of the market index, we have strong reasons to believe

that this non-negligible bias in the VRP measurement extends to a large number of stocks.

Lastly, we argue that this bias from the realized autocovariance is even more severe when

we decompose VRP into its loss and gain components. The gain-loss decomposition of the

squared return in equation (2) allows us to write the realized variance as the total of two

components: the cumulative sum of squared high-frequency gains and the cumulative sum of

squared high-frequency losses, which, similar to the quadratic gain and the quadratic loss can
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be interpreted as measures of gain uncertainty and loss uncertainty, respectively. These two

components of the realized variance are what Barndorff-Nielsen, Kinnebrock, and Shephard

(2010) refer to as realized semi-variances, formally defined as:

RVt−1,t = RVg
t−1,t + RVl

t−1,t where RVg
t−1,t =

1/δ∑
j=1

g2
t−1+jδ and RVl

t−1,t =

1/δ∑
j=1

l2t−1+jδ. (9)

where RVg
t−1,t and RVl

t−1,t are referred to as bad and good variances in the literature (e.g.,

Patton and Sheppard 2015; Kilic and Shaliastovich 2019; Bollerslev, Li, and Zhao 2020).

Note that, even if a negligible magnitude of the realized autocovariance made the quadratic

payoff r2
t−1,t proxy for the realized variance RVt−1,t, the quadratic loss (gain) would not proxy

for the loss (gain) realized variance. In fact, the quadratic loss (gain) is a censored variable

while the loss (gain) realized variance is not. Therefore, the quadratic loss (gain) is zero

63% (37%) of the time in our S&P 500 index return sample while the loss (gain) realized

variance is always positive and can be strongly positive at times, as illustrated in Panel C

(D) of Figure 1.

In summary, we show that the quadratic payoff can be very different from the realized

variance. This is also partly because the equity risk premium at a lower frequency is non-

zero and time-varying. The empirical evidence indeed supports this large wedge between the

quadratic payoff and the realized variance at a monthly frequency. We also find that this dif-

ference is much more significant between the quadratic loss and gain and their corresponding

semi-variances.

3 Measuring the Quadratic Risk Premium

Measuring the QRP amounts to estimating the physical and risk-neutral conditional ex-

pectations of quadratic payoff and taking their difference. In this section, we describe our

estimation methodology for these two conditional expectations and their loss and gain com-
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ponents. Both the risk-neutral expected quadratic loss and gain are model-free following

Bakshi, Kapadia, and Madan (2003). We measure both the physical expected quadratic loss

and gain as projections on the space spanned by historical loss and gain realized variances.6

3.1 Estimating the Risk-Neutral Conditional Expected Quadratic

Payoff

In practice, prior studies estimate the risk-neutral conditional expectation of quadratic payoff

directly from a cross-section of option prices. Bakshi, Kapadia, and Madan (2003) provide

model-free formulas linking the risk-neutral moments of the stock returns to explicit portfo-

lios of options. These formulas are based on the basic notion, first presented in Bakshi and

Madan (2000), that any payoff over a time horizon can be spanned by a set of options with

different strikes with the same maturity matched with this investment horizon.

We adopt the notation in Bakshi, Kapadia, and Madan (2003), and define Vt (τ) as the

time-t price of the τ -maturity quadratic payoff on the underlying stock. Bakshi, Kapadia,

and Madan (2003) show that Vt (τ) can be recovered from the market prices of out-of-the-

money (OTM) call and put options as follows:

Vt (τ) =

∫ ∞
St

1− ln (K/St)

K2/2
Ct (τ ;K) dK +

∫ St

0

1 + ln (St/K)

K2/2
Pt (τ ;K) dK. (10)

where St is the price of underlying stock, and Ct (τ ;K) and Pt (τ ;K) are call and put prices

with maturity τ and strike K, respectively. The risk-neutral expectation of the quadratic

6In theory, these expectations are conditional on the same information set. While asset pricing models
imply that both the physical and risk-neutral conditional expectations of uncertainty measures depend on
the same processes governing the state of the economy (e.g., Bollerslev, Tauchen, and Zhou, 2009; Drechsler
and Yaron, 2011; Bonomo, Garcia, Meddahi, and Tédongap, 2015), this theoretical implication is hard to
satisfy. This mismatch of conditioning information in the measurement of the two conditional expectations
may explain some differences between theory and practice. For example, the estimates of the QRP as defined
in equation (1) may display negative values for the aggregate stock market although theory predicts they
should be positive. The same holds for the VRP (see, for example, the plots of the aggregate stock market
VRP in Bollerslev, Tauchen, and Zhou, 2009).
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payoff is then

EQ
t

[
r2
t,t+τ

]
= erf τVt (τ) , (11)

where rf is the continuously compounded interest rate.

We compute Vt (τ) for each firm on each day and by each days-to-maturity. In theory,

computing Vt (τ) requires a continuum of strike prices, while in practice we only observe a

discrete and finite set of them. Following Jiang and Tian (2005) and others, we discretize

the integrals in equation (10) by setting up a total of 1001 grid points in the moneyness

(K/St) range from 1/3 to 3. First, we use cubic splines to interpolate the implied volatility

inside the available moneyness range. Second, we extrapolate the implied volatility using

the boundary values to fill the rest of the grid points. Third, we calculate option prices

from these 1001 implied volatilities using the formula of Black and Scholes (1973).7 Next,

we compute Vt (τ) if there are four or more OTM option implied volatilities (e.g. Conrad,

Dittmar, and Ghysels 2013 and others). Lastly, to obtain Vt (30) for a firm on a given day,

we interpolate and extrapolate Vt (τ) with different τ . This process yields a daily time series

of the risk-neutral expected quadratic payoff for each eligible firm in the sample.

Note that the price of the quadratic payoff Vt (τ) in equation (10) is the sum of a portfolio

of OTM call options and a portfolio of OTM put options:

Vt (τ) = V g
t (τ) + V l

t (τ) , (12)

where:

V l
t (τ) =

∫ St

0

1 + ln (St/K)

K2/2
Pt (τ ;K) dK and V g

t (τ) =

∫ ∞
St

1− ln (K/St)

K2/2
Ct (τ ;K) dK.

(13)

7We apply these steps to the estimation of the market and individual risk-neutral expected quadratic
payoffs. Although the market options are European, the individual equity options are American. Therefore,
directly using the mid-quotes of individual options is inappropriate because the early exercise premium may
confound our results. To avoid this issue, we use the implied volatilities provided by OptionMetrics. These
implied volatilities are computed using a proprietary algorithm based on the Cox, Ross, and Rubinstein
(1979) model, which takes the early exercise premium into account.
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In Subsection A.1 of the Internet Appendix, we analytically prove that V g
t (τ) is the price of

the quadratic gain, and V l
t (τ) is the price of the quadratic loss. Held, Kapraun, Omachel,

and Thimme (2018) also provide proof to support this loss and gain decomposition. Hence,

the risk-neutral expectation of quadratic loss and gain are:

EQ
t

[
l2t,t+τ

]
= erf τV l

t (τ) and EQ
t

[
g2
t,t+τ

]
= erf τV g

t (τ) . (14)

While the risk-neutral expected quadratic payoff can be estimated from available option

data following Bakshi, Kapadia, and Madan (2003), estimating the risk-neutral expected

variance is empirically infeasible in a similar model-free fashion. As shown in equation

(7), the risk-neutral expected realized variance is the sum of the risk-neutral expectations of

squared high-frequency returns. To estimate these expectations, one needs observable options

with high-frequency maturity δ or variance strikes in a variance swap market. However,

high-frequency (daily or 5-min) maturing options are not traded and liquid variance swap

markets only exist for a minority of large stocks and indices. By using QRP instead of

VRP, we also alleviate the severe empirical limitations in computing risk-neutral expected

realized variance, thus we can accommodate for a large cross-sectional study with companies

of various size.

3.2 Estimating the Physical Conditional Expected Quadratic Pay-

off

We use a regression model to estimate the expectations of squared monthly returns and

the loss and gain components. We assume that, conditional on time-t information, monthly

log returns rt,t+1 follow a normal distribution with time-varying mean µt = Et [rt,t+1] and
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time-varying variance σ2
t = Et [RVt,t+1]. These expectations are therefore

Et
[
r2
t,t+1

]
= µ2

t + σ2
t and


Et
[
l2t,t+1

]
= (µ2

t + σ2
t ) Φ

(
−µt
σt

)
− µtσtφ

(
µt
σt

)
Et
[
g2
t,t+1

]
= (µ2

t + σ2
t ) Φ

(
µt
σt

)
+ µtσtφ

(
µt
σt

)
,

(15)

where φ (·) and Φ (·) are the standard normal density and cumulative distribution functions,

respectively. An estimate of µt(= Z>t βµ) is the fitted value from a linear regression of

monthly returns onto predictors Zt, while an estimate of σ2
t is the fitted value from a linear

regression of monthly total realized variances onto the same predictors Zt. More specifically,

Et [RVt,t+1] = Et
[
RV g

t,t+1

]
+ Et

[
RV l

t,t+1

]
, Et

[
RV g

t,t+1

]
= Z>t β

g
σ and Et

[
RV l

t,t+1

]
= Z>t β

l
σ.8

Predictors Zt include the constant, and the loss (bad) and gain (good) realized variances

of the past month (t − 1 to t), the past five months (t − 5 to t), and the past twenty-four

months (t−24 to t). Our model is a variant of the HAR-RV model of Corsi (2009). While the

original HAR-RV model is used to forecast daily realized variance, our variant model targets

the monthly realized variance. In our forecasting regression, the loss and gain components

of the realized variance are separate regressors to account for their asymmetric effects in

return forecasting (e.g., Feunou, Jahan-Parvar, and Tédongap 2013; Bekaert, Engstrom,

and Ermolov 2015; Patton and Sheppard 2015) and in volatility forecasting (e.g., Patton

and Sheppard 2015). Prior studies provide strong evidence that decomposing the realized

variance into its loss and gain components significantly improves the explanatory power of

various HAR-RV models.

8Estimates of µt and σ2
t are consistent and unbiased quasi-maximum likelihood estimators. Diagnostic

tests show that we can’t reject the conditional normality assumption at the 5% significance level for the large
majority of stocks.
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4 Data and Descriptive Statistics

4.1 Data

Our sample runs from January 1996 to December 2015. Data on individual stock and S&P

500 returns are from the Center for Research in Security Prices (CRSP). We keep two more

years of returns (January 1994-December 1995) to compute the physical expectations of

realized variance for the start of the sample. Following the literature on cross-section studies,

we keep only common stocks listed on the NYSE, AMEX, and NASDAQ, which are firms

that have CRSP share codes of 10 and 11 and CRSP exchange code of 1, 2 or 3. In order

to control for firm-level characteristics, we collect data on market capitalization (price times

outstanding shares) and book values from CRSP and Compustat, respectively. For each firm,

its size is computed as the log of market capitalization, and the firm’s book-to-market ratio

is its book value divided by its market capitalization.9 To gauge the performance of a stock

in the past year, we compute the prior 12-month returns as the individual stock’s cumulative

excess returns from month t − 13 to t − 2 to avoid spurious effects. To control for market

factors, we collect the data on the market excess returns (market returns in excess of the

one-month T-bill rate), the size, value, and momentum factors from Kenneth French’s data

library.10 We also obtain data on VIX from the Chicago Board Option Exhange (CBOE).

For the estimation of the risk-neutral quadratic payoff, we rely on stock options (individ-

ual firm-level and S&P 500) obtained from the IvyDB OptionMetrics database. We exclude

options with missing or negative bid-ask spread, zero bid, or zero open interest (e.g, Carr

and Wu 2009). Following Bakshi, Kapadia, and Madan (2003), we restrict the sample to

out-of-the-money options. To ensure that our results are not driven by misleading prices,

we follow Conrad, Dittmar, and Ghysels (2013) and exclude options that do not satisfy the

9Consistent with the literature, we remove firms with negative book values. Since book value is only
observed yearly, the daily variability of the book-to-market comes solely from the changes in the market
capitalization. Thus we may have extremely large book-to-market for distressed firms if these firms’ market
capitalization significantly decrease within days. Therefore, we winsorize the book-to-market ratio at the
99% level.

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html.
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usual option price bounds, missing implied volatility, or options with less than 7 days to ma-

turity. For a firm on a given day and a given maturity, we record the risk-neutral expected

quadratic payoff as missing if there are less than four OTM implied volatilities. For details

on the estimation methodology, see section 3.1.

To merge the option data with the CRSP stock data, we follow the approach in Duarte,

Lou, and Sadka (2006). The size of the cross-section is mostly determined by the number

of firms with available and eligible stock option data. In January 1996, the cross-section

contains 426 firms, while in December 2015, the size of the cross-section has grown signifi-

cantly to 1,245 firms. The average size of the cross-section throughout our sample period is

approximately 898.

4.2 Descriptive Statistics

Our sample covers a wide range of firm size. We report descriptive statistics for firm-level

characteristics in Panel A of Table 1. Median values of the loss, gain, and net QRPs are

positive on average, equal to 48.73, 28.81, and 10.71 in monthly percentage-squared units,

respectively. The median value of stock illiquidity (ILLIQ) has a mean of 4.8e-3 with positive

skewness and kurtosis, which are comparable to values reported in Amihud (2002). The

median value of firm risk-neutral skewness (SKEW) is on average -0.51, which is in the same

range as values reported by Conrad, Dittmar, and Ghysels (2013). The median value of

firm idiosyncratic volatility (IVOL) is 2.04% on average, which also compares well with the

findings of Hou and Loh (2016).

In Panel A of Table 1, we also show the descriptive statistics of market-wide factors.

These factors are control variables in subsequent cross-sectional analyses of the relation

between expected stock returns and QRP. The market loss QRP is on average 16.12 while

the market gain QRP is much smaller on average equal to 5.17, which leads to a positive

average value of 10.94 for the market net QRP.11 Furthermore, the market loss and gain QRP

11For comparison, the mean of market total VRP as reported by Bollerslev, Tauchen, and Zhou (2009) is
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have distinct dynamics. For instance, the market loss QRP exhibits more than twice the

volatility of market gain QRP (14.87 vs. 6.52); the kurtosis of market loss QRP is less that

third the kurtosis of gain QRP (7.42 vs. 24.22); and the market loss QRP is more persistent

with a first-order autocorrelation coefficient of 0.79 compared to the gain QRP’s much lower

autocorrelation of 0.58. The market risk-neutral skewness is negative on average with a value

of -1.96, consistent with the values reported in the previous literature; for example, -1.26 in

Bakshi, Kapadia, and Madan (2003).

Panel B of Table 1 shows the time series averages of the cross-sectional correlations be-

tween firm-level variables. Since the net QRP is the difference between the loss and gain

QRP, as expected, the net QRP is positively correlated with the loss QRP and negatively

correlated with the gain QRP in the cross-section, with correlation values of 0.44 and -0.49,

respectively. The loss QRP and the gain QRP have a cross-sectional correlation of 0.38.

Interestingly, the QRP measures show little cross-sectional correlations with other firm char-

acteristics such as the stock illiquidity, risk-neutral skewness, idiosyncratic volatility, etc.

The absolute correlation values do not exceed 0.19. This suggests that we can rule out

potential multicollinearity issues that may affect statistical inference in subsequent empiri-

cal tests; for example, in cross-sectional regressions of excess returns on the quadratic risk

premium and other firm characteristics.

In Panel A of Figure 2, we plot the month-by-month cross-sectional median values of

firm-level loss QRP in monthly percentage-squared units. The median loss QRP peaks

during large market downturns. In particular, the loss QRP peaked at 125.04 in October

1998 during the long-term capital management (LTCM) crisis, 138.21 in July 2002 toward

the end of the dot-com bubble, and 254.83 in November 2008 during the financial crisis.

Similarly, in Panel B, we plot the month-by-month median values of firm-level gain QRP.

The median gain QRP also peaks during large market downturns. The median gain QRP

18.30. The relatively smaller average value of gain QRP also suggests that the average investor is relatively
indifferent about fluctuations in market gain uncertainty, although she does care about fluctuations in market
loss uncertainty. In a sense, these statistics also corroborate the findings of Feunou, Jahan-Parvar, and Okou
(2018), who shows that the market bad VRP is the most important component of the market total VRP.
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peaked at 58.06 in October 1998 during the LTCM crisis, 69.96 in May 2000 during the

dot-com bubble, and 85.97 in March 2009 during the financial crisis.

5 Results

We now provide an empirical assessment of the cross-sectional relationships between the

reward for investing in stocks (measured by their expected excess returns), and the stock’s

downside and upside risks (measured by their loss QRP and gain QRP, respectively). We

assess these relationships through portfolio sorts and cross-sectional regressions. Since the

loss and gain QRP have little cross-sectional correlation as shown in Panel B of Table 1,

we start by studying univariate sorted portfolios based on these QRPs. Next, we pair up

each of our QRPs with each of the control variables investigated in the literature in bivariate

portfolio sorts. These two-dimensional sorts are useful to examine QRPs’ additional cross-

sectional predicting power beyond existing variables. Finally, we run firm-level cross-sectional

regressions to jointly estimate the prices of risks associated with the loss and gain QRP, when

controlling altogether for multiple cross-sectional effects.

5.1 Single Sorting

We first analyze univariate portfolio sorts involving our estimates of firm-level QRPs. More

specifically, at the end of each month, we sort firms into quintiles based on their corresponding

monthly average values for the specific characteristic, such as the loss, gain or net QRPs.

Consistent with theory, we focus only on positive QRP values.12 Quintile 1 thus contains the

firms with QRP values in the bottom 20% while quintile 5 contains firms with QRP values

in the top 20%. Then, for each quintile we use end-of-month market capitalizations to form

a value-weighted portfolio and measure its excess returns over the next month.13 For each

12In Table B1 of the Internet Appendix, we allow for negative QRP values and find that our main results
and conclusions hold.

13Measuring post-ranking excess returns in portfolio sorts avoids spurious effects (e.g., Fama and French
1993; Ang, Hodrick, Xing, and Zhang 2006; Chang, Christoffersen, and Jacobs 2013).
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quintile, we report the cross-sectional average value of a specific characteristic (the loss, gain

or net QRPs), as well as the portfolio average monthly excess returns and alphas, where

alphas are computed relative to the five-factor model of Fama and French (2015).

Panel A of Table 2 shows that there is a wide range of loss QRP values among our quintile

sorted portfolios based on the loss QRP. The time-series average of loss QRP are 11.26 and

268.94 for the lowest and highest quintiles, respectively. Similarly, Panel B of Table 2 shows

that the gain QRP values, among our gain QRP sorted portfolios, also cover a wide range

from a low of 5.44 to a high of 200.74 on average. Take the two lowest quintiles for example, as

discussed in Subsection 2.2, the lowest quintiles consists of firms which are either associated

with weak downside risk (measured by its loss QRP) or immense upside potential (measured

by its gain QRP) in bad times, in contrast to firms in the highest quintiles, respectively.

Turning to the cross-sectional pricing effect of the QRP components (the loss, gain or net

QRPs), we present the portfolio average monthly excess returns and alphas in Table 2. In

Panel A of Table 2, when firms are sorted based on their loss QRPs, the average excess returns

and alphas are monotonically increasing from the lowest quintile to the highest quintile.

The average monthly excess returns of the lowest quintile is 0.04% which is significantly

lower than the average value 1.48% for the highest quintile portfolio, resulting a high-minus-

low difference of 1.44% per month on average. Beyond that, the risk-adjusted performance

measured by portfolios’ alpha confirms that on average the highest quintile portfolio is better

remunerated than the lowest quintile portfolio. The high-minus-low portfolio has a alpha of

0.88% per month with a t-statistic equal to 3.06 which is significant at the 99% confidence

level. As discussed in Subsection 2.2, investors are risk-averse and prefer firms with lower loss

QRP because these firms’ downside risk tend to disappear in bad times. Therefore investors

are happy to face less or no insurance costs and they are willing to pay more for such assets,

thus accepting a lower premium to invest in them. In contrast, firms with higher loss QRP

are often disliked by investors since these firms’ downside risk tend to be severe in bad times.

As a result, investors incur more insurance costs and they are willing to pay less for such
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assets, thus requiring a larger premium.

In Panel B of Table 2, when sorting with respect to gain QRP, we also find that average

excess returns are monotonically increasing from the lowest quintile to the highest quintile

portfolio. The average monthly excess returns of the lowest quintile is -0.05% which is sig-

nificantly lower than the average value 1.61% for the highest quintile portfolio, resulting a

high-minus-low difference of 1.66% per month on average. Beyond that, the risk-adjusted

performance measured by portfolios’ alpha again confirms that on average the top quintile

portfolio performs better than the bottom quintile portfolio does. The high-minus-low port-

folio has a alpha of 1.30% per month with a t-statistic equal to 4.42 which is significant at

the 99% confidence level.

Following our discussion in Subsection 2.2, investors are potential-seeking and prefer

firms with lower gain QRP since these firms’ upside potential tend to be strong in bad

times. Therefore, investors require less or no protections and they are then willing to pay

more for such assets, thus accepting a lower premium. To the contrary, investors dislike firms

with higher gain QRP since these firms’ upside potential shrink in bad times. This leads to

a larger required compensation for such assets thus a higher premium.

Panel C of Table 2 shows results when firms are sorted on their net QRPs — the difference

between loss and gain QRPs. The high-minus-low average excess returns and alphas are

much smaller compared to sorting on the loss or gain QRP, and not statistically significant

at conventional levels. This suggest that, although the premium on loss and gain uncertainty

is highly relevant for the cross-section of expected stock returns, the premium for the net

effect is not. Therefore, it is crucial to decompose the total uncertainty of a stock into its

loss and gain components.

To summarize, the loss QRP and the gain QRP generate monotonic patterns in the aver-

age returns of sorted portfolios with statistically significant differences between the highest

and the lowest quintiles. Sorting firms on their gain QRPs leads to a somewhat larger het-

erogeneity in performance than sorting firms on their loss QRPs. On the other hand, the
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net QRP does not generate monotonic trends in returns or alphas, and we find no evidence

that it is priced in the cross-section of expected stock returns.14 These results suggest that

the loss QRP and the gain QRP contain different information contents, and it is crucial to

consider these two QRP components separately for cross-section of expected stock returns.

5.2 Double Sorting

We now examine whether variations in QRP components (the loss and gain QRPs) are

subsumed by various cross-sectional effects discussed in the extant literature. Following Fama

and French (1992), we first sort firms into five groups based on a key variable (systematic risk

or characteristic) representing a specific cross-sectional effect documented in the literature.

Next, within each group, we further sort firms into quintile portfolios based on each QRP

component. If the information content of the QRP component had no additional value for

investors, then average excess returns on quintile portfolios from the second sorts based on

the QRP component would not generate a significant high-minus-low difference. For the

second sorts, we report the average difference of the high-minus-low (“5-1”) excess returns,

together with the corresponding t-statistic. Here the highest quintile “5” contains firms with

the highest QRP component and the lowest quintile “1” contains firms with the lowest QRP

component.

5.2.1 Controlling for Systematic Risk Measures

We control for systematic risk measures that are motivated by leading asset pricing models

and financial theories. Since our loss and gain QRPs have asymmetric effects on cross-

section of expected stock returns, we start by considering downside risk measures which are

14The results also hold for value-weighted tercile and decile portfolios, as well as for equally-weighted
portfolios. Further, we find quantitatively similar Jensen alphas when including the momentum factor
(Carhart, 1997) and the liquidity factor (Pastor and Stambaugh, 2003). These untabulated results are
available upon request.
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also motivated by this asymmetric treatment.15 Farago and Tédongap (2018) prove that

in an intertemporal equilibrium asset pricing model featuring generalized disappointment

aversion (GDA) and changing macroeconomic uncertainty, besides the market return and

market volatility, three downside risk factors are also priced: a downstate factor, a market

downside factor, and a volatility downside factor.16 These five GDA factors depend on two

variables: the log market return and changes in market conditional variance. To measure

the unobservable market conditional variance, we use σ2
t estimated in Section 3.2. Following

Farago and Tédongap (2018, see their Online Appendix), we use short-window regressions

to estimate the stocks’ exposures to the GDA factors. Details are provided in Subsection

A.2 in the Internet Appendix.

Table 3 shows the results of the double sorts when we control for exposures to these

five GDA factors in the first five panels. Note that these five exposures are obtained from

the same regression all together, while double sorts pair up each of these exposures with a

QRP component one at a time. In Panel A, firms with high loss QRP outperform those

with low loss QRP within all five groups of each of the GDA factor exposures. For instance,

when we control for exposures to the three downside risk factors, the sizeable high-minus-low

spreads range between 0.51% and 2.29% per month. Likewise in Panel B, firms with high

gain QRP outperform those with low gain QRP within all five groups of each of the GDA

factor exposures, with sizeable spreads ranging between 0.88% and 2.77% per month when

controlling for exposures to the three downside risk factors of the GDA model. All reported

spreads are statistically significant at the 95% or higher confidence level. This suggests that

the cross-sectional variation in average excess returns reflects the heterogeneity in firm QRP

15The asymmetric treatment of loss and gain has a long standing in the academic literature (see for example
Roy, 1952 and Markowitz, 1959) and has motivated the development of theories of rational behavior under
uncertainty that imply priced downside risk in capital markets (see for example Bawa and Lindenberg, 1977,
Kahneman and Tversky, 1979, Quiggin, 1982, Gul, 1991, and Routledge and Zin, 2010).

16Empirical studies by Ang, Chen, and Xing (2006) and Lettau, Maggiori, and Weber (2014) examine
the pricing of market downside risk as motivated by the disappointment aversion theory of Gul (1991), for
several asset classes. More recently, Farago and Tédongap (2018) show that in the presence of fluctuating
macroeconomic uncertainty, volatility downside risk is priced in addition to market downside risk, and their
findings give strong support to the generalized version of the disappointment aversion theory as developed
by Routledge and Zin (2010).
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components that is unrelated to heterogeneous exposures to leading downside risk measures

across stocks.17 We finally observe from Table 3 that patterns of the alphas are very similar

to patterns of the expected excess returns across the different quintile portfolios.

We consider three other systematic risk factors for which variations are likely correlated

with firm-level QRP components, namely the market loss and gain QRPs (see Figure 2),

and the market risk-neutral skewness. The choice of market QRP components is motivated

from the consumption-based general equilibrium asset pricing model proposed by Bollerslev,

Tauchen, and Zhou (2009) featuring time-varying risk in the stochastic volatility. Their

model suggests three cross-sectional pricing factors: market excess returns, innovations in

market conditional variance, and innovations in market variance of variance. We substi-

tute the variance of variance factor with the market loss and gain QRPs and measure firm

exposures to these two market QRP components from the resulting four-factor model.18

Lastly, firm exposures to the market risk-neutral skewness is calculated following Chang,

Christoffersen, and Jacobs (2013). Details are provided in Subsection A.2 in the Internet

Appendix.

Table 3 also displays double-sorting results on firm QRP components when we control

for exposures to market QRP components and the market risk-neutral skewness. As shown

in both panels, controlling for exposures to either market QRP components or the market

risk-neutral skewness does not hinder the ability of firm QRP components to explain cross-

sectional differences in average excess returns. Firms with high loss QRP outperform those

with low loss QRP within all five clusters of each of the exposures to the market loss QRP

and the market risk-neutral skewness, with sizeable spreads ranging between 2.34% and

4.55% per month. Likewise, firms with high gain QRP outperform those with low gain QRP

17We focus on the work of Farago and Tédongap (2018) when controlling for existing downside risk
measures, as the authors prove theoretically that the downside risk measures in Ang, Chen, and Xing (2006)
and Lettau, Maggiori, and Weber (2014) are particular linear combinations of the multivariate GDA factor
exposures.

18Since the model in Bollerslev, Tauchen, and Zhou (2009) also implies that the market VRP is solely
determined by the variance of variance, and given the bias in measuring VRP and its components in the
literature (see the discussion in 2.3), we choose to use our loss and gain QRPs instead.
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within all five clusters of exposures to the market gain QRP and the market risk-neutral

skewness. These spreads range between 1.92% and 4.22% per month. All reported spreads

are statistically significant at the 95% or higher confidence level.

Altogether, these results suggest that the cross-sectional variation in average excess re-

turns reflects heterogeneity in firm QRP components that is unrelated to the heterogeneous

exposures to various systematic risk across stocks. The systematic risk factors considered

here includes the five GDA factors, the market loss and gain QRPs and the market risk-

neutral skewness.

5.2.2 Controlling for Other Firm Characteristics

We again use double-sorting methodology to examine whether the asset pricing information

in some major firm characteristics already account for the pricing information embedded in

firm QRP components.19 If firm QRP components were priced simply because they capture

the information content of other firm characteristics, then controlling for these other firm

characteristics would yield a weak or insignificant cross-sectional variation in average returns

across stocks sorted on firm QRP components. In Subsection A.2 in the Internet Appendix,

we provide details about the source and construction method for the time series of the

firm-level characteristics we control for.

First, we control for the implied volatility smirk proposed by Xing, Zhang, and Zhao

(2010) and Yan (2011). The authors define the implied volatility smirk as the difference

between the implied volatility of out-of-the-money (OTM) puts and at-the-money (ATM)

calls. They show that the implied volatility smirk is a strong predictor of expected returns

in the cross-section because it captures a stock’s tail risk. We compute it for all the firms in

our sample. Although both implied volatility smirk and loss QRP are measuring downside

risk, we find that the average cross-sectional correlation between these two measures is 0.03.

19We treat QRP components (the loss, gain and net QRPs) as firm characteristics because there are no
observable market-wide factors such that QRP components measure the associated systematic risk exposures
(or factor loadings).
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This suggests that the implied volatility smirk and the loss QRP are capturing different

information about the downside risk of a stock.

Table 4 presents results when we sort stocks by their QRP components after controlling

for the implied volatility smirk (SKEW thereafter). Both panels show that firms with high

loss (gain) QRP outperform those with low loss (gain) QRP within all five groups of SKEW,

with sizeable spreads ranging between 1.15% (1.16%) and 2.11% (2.87%) per month. All

reported “5-1” spreads are statistically significant at the 95% or higher confidence level.

We obtain similar findings for other measures capturing firm-level downside risk such as

the risk-neutral skewness (Rehman and Vilkov, 2012; Conrad, Dittmar, and Ghysels, 2013;

Stilger, Kostakis, and Poon, 2016; Bali, Hu, and Murray, 2019; Schneider, Wagner, and

Zechner, 2020) and the physical skewness as measured by the relative signed jump variation

(Bollerslev, Li, and Zhao, 2020).20 These results show that the cross-sectional variation in

average excess returns reflects heterogeneity in firm QRP components that is unrelated to

heterogeneity in various firm-level downside risk measures across stocks.

Beyond firm characteristics capturing the downside risk, other characteristics we control

for in Table 4 include the idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006),

the stock illiquidity (Amihud, 2002), the analysts’ coverage of the stock as proxied by the

number of analysts (Hong, Lim, and Stein, 2000), and the demand for lottery as proxied by

the maximum daily return during the previous month (Bali, Cakici, and Whitelaw, 2011).

After controlling for these firm characteristics, there is still a positive and significant cross-

sectional relation between QRP components and expected returns.21 We find that the spreads

range between 0.67% and 3.85% per month and they are all significant at the 95% or higher

confidence level.22

20In untabulated results, we also control for the risk-neutral counterpart of the relative signed jump
variation (Huang and Li, 2019), and find that our main results hold.

21We also investigate if the volatility spread (Bali and Hovakimian, 2009; Cremers and Weinbaum, 2010)
or option illiquidity (Goyenko, Ornthanalai, and Tang, 2015) subsume the predictability by QRP compo-
nents. We report results for conditional double-sorts on the volatility spread or option illiquidity and QRP
components in Table B2 of the Internet Appendix. We find that the QRP components are still strongly
significant after controlling for either the volatility spread or option illiquidity.

22We note that our double-sort results do not imply that cross-sectional predictability by QRP components
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5.3 Fama-MacBeth Regressions

In this subsection, we follow the procedure introduced by Fama and MacBeth (1973) and run

month-by-month cross-sectional regressions using individual firms. These cross-sectional re-

gressions allow us to estimate the sensitivity of expected returns to stock QRP components—

prices of downside and upside risks associated with loss and gain QRP, respectively. Through

cross-sectional regressions, we can also control for various cross-sectional effects at once.

While using portfolios as test assets in Fama-MacBeth regressions is fairly common, our

choice of individual stocks follows Ang, Liu, and Schwarz (2020) and Gagliardini, Ossola,

and Scaillet (2016), who highlight the advantage of the use of a large cross-section of indi-

vidual stocks versus a few portfolios. They find that using portfolios destroys important and

necessary information, which leads to much less efficient estimate of the cross-sectional risk

prices. Other than the efficiency gain, using individual stocks as test assets will also yield

more conservative estimates.

In Table 6, we report the time series average of the risk prices of QRP components, where

we control for systematic risk in Fama-MacBeth regressions. There are seven different model

specifications. In Model I, the net QRP is used to explain differences in the expected returns.

The estimated average prices of the net QRP is -0.19 with t-statistic equal to -1.49, which is

not statistically significant at conventional levels.23 In Model II, we use both the loss QRP

and the gain QRP separating the downside risk from the upside risk. The price of the loss

QRP (measuring the downside risk) is 0.49 with t-statistic equal to 3.34, and the price of

the gain QRP (measuring the upside risk) is 0.98 with t-statistic equal 5.76. Both effects are

statistically significant at the 99% confidence level. These results show that decomposing

subsumes the predictability by the other firm characteristics or factor exposure, which have been shown to
have significant predictive power on the cross-section of expected excess returns across all stocks in CRSP
for different sample periods and horizons. Our sample includes only optionable stocks, and covers a different
sample period. For example, untabulated monthly univariate sorts based on firms’ exposure to market
risk-neutral skewness or firm’s relative signed jump variation yield statistically insignificant spreads in our
sample.

23Harvey, Liu, and Zhu (2016) show that any new factor needs to have a t-statistic greater than 3.0. While
the net QRP is a firm characteristic and not a factor, we still believe the hurdle is relevant.
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the net QRP into two components (loss QRP and gain QRP) proves meaningful in the

Fama-MacBeth regressions.24 In Table B3 in the Internet Appendix, we further find, using

unconditional double-sort portfolios, that loss and gain QRP contain different information

on the cross-section of expected stock returns.

We design five other models (Models III to VII) to test the robustness of Model II. After

controlling for the CAPM beta (Model III), firm exposure to market skewness (Model IV),

firm exposures to market variance and market QRP (Model V), Carhart factor exposures

(Model VI), and GDA factor exposures (Model VII). The statistical significance and eco-

nomic magnitude of the prices of loss and gain QRPs remain unchanged. This suggests that

cross-sectional predictability by QRP components is not subsumed by exposures to existing

systematic risk factors.

We now turn to the Fama-Macbeth results in Table 7, where we control for other firm

characteristics in Model VIII and IX. In Model VIII, we add the relative signed jump vari-

ation RSJ , while in Model IX we further include a considerably large panel of other firm

characteristics including the idiosyncratic volatility (IV OL), size, book-to-market (B/M),

illiquidity (ILLIQ), the risk-neutral skewness (FSKEW ), realized semi-variances (RV l and

RV g), short-term reversal (P01M) and momentum (P12M). Once again, accounting for these

multiple cross-sectional effects does not erode the statistical significance or economic mag-

nitudes of the prices of QRP components.

In summary, neither the systematic risk nor other firm characteristics appear to drive

out either QRP component of the net QRP. The estimated prices of the loss (gain) QRP

range from 0.49 (0.98) to 0.74 (1.23) in Tables 6 and 7. Since the time series average of the

24This is similar to the findings of Campbell and Vuolteenaho (2004) and Bansal, Dittmar, and Lundblad
(2005). Starting from the CAPM and the consumption-based CAPM, respectively, the authors decompose
total asset risk into a cash flow component and a discount rate component. They find weak evidence that
total asset risk is priced, although have strong evidence for priced cash flow risk. Given these findings,
Bansal, Dittmar, and Lundblad (2005) argue that, when multiple sources of risk are priced, solely using the
combined exposure in cross-sectional regression can produce a “tilt,” and the estimated price of risk can
be insignificant. If, however, one extracts the different components of risk, then they should appropriately
measure differences in risk premia attributable to the different sources. Likewise, net QRP, in the presence
of downside risk and upside risk, may fail to account for the differences in the risk premia across assets,
which the loss and gain QRP may explain.
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cross-sectional standard deviations of loss (gain) QRP is 173.28 (135.60), a one-standard-

deviation increase in the loss (gain) QRP is associated with a 0.85%–1.28% (1.33%–1.67%)

rise in monthly expected stock returns. These effects are highly economically significant. In

contrast, since the average standard deviation of net QRP is 226.45, a one-standard-deviation

increase in the net QRP is associated with a −0.43% decrease in monthly expected stock

returns.

5.4 Robustness Checks

We perform a number of additional checks to verify the stability of our findings. All these

results are in the Internet Appendix.

Subsample Analysis We repeat the univariate sorts for two subsamples: one excludes

the recent financial crisis (January 1996 - December 2006), and another excludes the IT-

crisis (January 2003 - December 2015). We report the results in Table B4 in the Internet

Appendix. These results confirm that the significant and positive cross-sectional relation

between expected stock returns and the loss and gain QRP is not driven by the two crisis

periods in recent years. We also perform the univariate sorts for the sample free from

non-synchronicity of option and stock market (April 2008 - December 2015). We find the

cross-sectional return predictability of both the loss and gain QRP remain strong across

these subsamples.

Alternative Measures To gauge the robustness of our findings to alternative measures

of QRP, we consider QRP components standardized either by the physical or risk-neutral

expected quadratic payoff,25 and the empirically feasible, yet potentially biased measure of

the variance risk premium Ṽ RP discussed in section 2.3. These results can be found in

25There is a large heterogeneity of QRP levels across stocks. For our cross-sectional empirical analysis, we
observe stocks that have a relatively high or low QRP because their overall level of the expected quadratic
payoff (risk-neutral or physical) is high or low. To address this issue, we follow Bollerslev, Li, and Zhao
(2020) and standardize QRP by the risk-neutral or physical expected quadratic payoff, respectively.
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Tables B5 to B7 on the Internet Appendix. In general, all of our results hold using these

three measures. Most notably, using the biased Ṽ RP measure leads to the false conclusion

that upside risk is not priced in the cross-section of expected stock returns which is in line

with the findings of Kilic and Shaliastovich (2019) who focus on market gain VRP. This

again highlights the need to use our unbiased and robust gain QRP measure to investigate

the relationship between upside risk and expected stock returns.

Dividend and Non-Dividend Paying Stocks We compute option prices assuming no

dividend payments during the maturity period of an option. This is because dividends are

hard to predict thus the large measurement errors in the predicted dividends may confound

our results. However, due to the zero dividend assumption, firms which are expected to

pay dividends have underpriced put option prices and overpriced call option prices leading

to a downward bias in their loss and gain QRPs.26 We follow Cao and Han (2013) and

analyze univariate sorts based on the loss and gain QRP for non-dividend paying stocks and

dividend paying stocks separately in Table B8 in the Internet Appendix. In both subsamples,

the predictability of QRP components is positive and significant. This predictability is much

stronger in the subsample of the non-dividend than the subsample of the dividend paying

stocks.

Nonsynchronicity of Option and Stock Markets Our measures of loss (gain) QRP

are in part estimated from closing bid and closing ask option quotes. The documented pre-

dictability of the loss (gain) QRP may simply be driven by nonsynchronicity. On most days,

option markets close at 4:02PM Eastern Standard Time (EST), while stock exchanges close

at 4:00PM EST.27 As a result, there is a minimum 2-minute gap between the last stock

transaction and the last recorded options quotes in the same day. Battalio and Schultz

26This potential bias is not well known in the literature, but is briefly discussed in Cao and Han (2013)
and more recently in Branger, Hülsbusch, and Middelhoff (2018).

27The closing time of the Chicago Board Options Exchange (CBOE) market for options on individual
stocks was 4:10PM EST until June 22, 1997.
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(2006) show that this nonsynchronicity leads to spurious predictability. OptionMetrics ac-

knowledged this issue and adjusted the record of the-end-of-day quotes at 3:59pm EST after

March 5th 2008.28 Therefore, to investigate whether our main results are driven by nonsyn-

chronicity, we limit the sample to April 2008 to December 2015. In Table B9 of the Internet

Appendix, we present results of single-sorts based on loss and gain QRP. We find that our

main results hold in this sample.

In summary, our results confirm that the loss and gain QRPs are significant and robust

risk measures in the cross-section. In particular, while the downside risk has been shown to

be priced in previous literature, there is little evidence about the pricing of the upside risk.

In this respect, our findings regarding the gain QRP complement the existing literature.

6 Discussion

The previous sections provide extensive and robust evidence that QRP components are

strong and economically significant predictors of expected stock returns in the cross-section.

We also find that “5-1” spreads on QRP components in double-sort results of Section 5.2

show significant discrepancy, sometimes a strong monotonic pattern, across the different

quintiles of some the controlled firm characteristics. The larger the “5-1” spreads the stronger

the cross-sectional predictability. Motivated by these monotonic patterns in spreads, we

investigate possible explanations for the return predictability of QRP components. Because

the predictability of QRP components is strongest among certain types of stocks relative to

other categories, we argue that the underlying particular firm characteristic of these stocks

might then be explaining their cross-sectional predictability. This section ends by discussing

how QRP components can enhance our understanding of existing cross-sectional findings

regarding the implied volatility smirk and idiosyncratic volatility.

28After March 5th 2008, OptionMetrics defines closing bid (ask) at 3:59PM EST across all exchanges
on which the option trades. Thus, after this date there are no nonsynchronicity problems present in the
OptionMetrics data.
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Limits to Arbitrage In general, highly illiquid stocks are more costly (require higher

capital) to arbitrage, thus they carry a higher risk. This would limit rational arbitrageurs in

exploiting any arbitrage opportunity among these stocks. If this type of limit to arbitrage

(e.g., Shleifer and Vishny 1997) is driving the predictability of the loss or gain QRP, we

expect to find stronger predictability in the most illiquid stocks. Controlling for the stock

illiquidity in Table 4, we find that both the loss and gain QRPs have the highest predictability

among the most illiquid stocks, and this predictability decreases as the liquidity increases.

Firms with high loss (gain) QRP significantly outperform those with low loss (gain) QRP

within all quintiles. Most notably, among highly illiquid firms, the “5-1” spreads are almost

two times as large as that for the most liquid firms on average. These results suggest that

limits to arbitrage are in part driving the predictability of the loss and gain QRPs.29

Information Asymmetry Difficulties in interpreting downside and upside risk signals

from the loss and gain QRPs may lead to potential asymmetric information among firms.

Hong, Lim, and Stein (2000) use larger analyst coverage as an indicator of less information

asymmetry, as higher analyst coverage means more diffusion of firm-specific information. We

ask whether the strong return predictability by the loss and gain QRPs is in part reflecting

the degree of asymmetric information among firms. If this is the case, we would expect to find

the strongest predictability among firms with the highest degree of information asymmetry

(lowest analyst coverage). Controlling for the average number of analysts covering the stock

in Table 4, we find a clear pattern in “5-1” spreads. As analysts’ coverage increases, the

predictability by the loss and gain QRPs decrease and the predictability is the strongest

among stocks with the highest information asymmetry (lowest analyst coverage). These

results provide evidence that the information asymmetry partly drives the predictability by

29The idiosyncratic volatility also empirically characterizes the arbitrage risk (e.g., Ali, Hwang, and Tromb-
ley 2003; Cao and Han 2016). Similarly, we find that the predictability by the loss and gain QRPs also
increases monotonically as the idiosyncratic volatility increases in Table 4.
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the loss and gain QRPs.30

Demand for Lottery Kumar (2009), Bali, Cakici, and Whitelaw (2011), and Han and

Kumar (2013) document that investors have a preference for lottery-like assets. Bali, Cakici,

and Whitelaw (2011) show that a proxy for lottery demand (MAX) defined as the average

of the five highest daily returns in a given month is negatively related to expected stock

returns in the cross-section. If the predictability by the QRP components is partly driven

by the investor demand for lottery-like features, this predictability should be the strongest

(weakest) among stocks with high (low) MAX. Controlling for the stock MAX in Table 4,

we find that firms with high QRP components outperform those with low QRP components

within all quintiles of MAX. Notably, we find a monotonically increasing pattern in the

“5-1” spreads. As the demand for lottery-like features increases, the predictability by the

loss and gain QRPs increases significantly. The “5-1” spreads are almost three times higher

among firms in the highest MAX quintile compared to those in the lowest MAX quintile.

These results show that investors’ demand for lottery-like features in part driving the strong

predictability by the QRP components.31

Decrypting Implied Volatility Smirk versus Loss QRP In Panel A of Table 5, we

further investigate whether the SKEW and the loss QRP measure different aspects of a

stock’s downside risk. We use a triple-sorting strategy to investigate the effect of SKEW

within different levels of QRP components. Notably, we find some evidence that the cross-

sectional predictability by SKEW is significant only among stocks with high loss QRP, and

within this group, it is the strongest among stocks with high gain QRP. Firms with high

30In Table B10 and B11 of the Internet Appendix, we find that the predictability by the loss and gain
QRPs is highest among small firms, and it decreases as the firm size increases. To the extent that larger
firms have less information asymmetry than smaller firms (e.g., Hong, Lim, and Stein, 2000; Bollerslev, Li,
and Zhao, 2020), these results confirm that the information asymmetry may partly explain the predictability
of QRP components.

31In Table B12 of the Internet Appendix, we find that the predictability by the gain QRP is highest among
growth firms, and decreases as the book-to-market ratio increases. To the extent that growth firms are mostly
attractive for their upside potentials or their lottery-like feature relative to value firms, these results further
confirm that the lottery demand may partly explain the predictability of the QRP components.
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loss QRP are the ones with high downside risk, while firms with high gain QRP are the ones

with low upside potential. These firms are more likely to have expensive OTM put options

and cheap ATM call options, and, thus, have the steepest implied volatility smirk. These

findings otherwise confirm, yet complement the results of Xing, Zhang, and Zhao (2010) and

Yan (2011).

Do QRP Components Rationalize the Idiosyncratic Volatility Puzzle? In Panel

B of Table 5, we examine whether the QRP components may enhance our understanding of

the idiosyncratic volatility (IVOL thereafter) puzzle. The IVOL puzzle was first documented

by Ang, Hodrick, Xing, and Zhang (2006) and has become a popular asset pricing anomaly in

the literature. Stambaugh, Yu, and Yuan (2015) find that IVOL is negatively priced among

overpriced stocks, and has the highest predictability among overpriced stocks that are also

difficult to short. We use a triple-sorting strategy to investigate the effect of IVOL within

different levels of QRP components. Our findings suggest that the cross-sectional return

predictability of IVOL is significant only among stocks with low loss QRP, and within this

group, it is the strongest among stocks with low gain QRP. Stocks with low loss QRP are

desirable to investors because their downside risk is low during bad times. Such stocks are

in high demand and are potentially overpriced. Among them, stocks with low gain QRP

are even more preferred by investors and shorting them is very risky and costly because

their upside potentials tend to be strong in bad times. Thus stocks with both low loss QRP

and low gain QRP are relatively expensive and are likely associated with difficulty to short.

Our results directly relate to the findings reported in Stambaugh, Yu, and Yuan (2015), and

extends their results using our measures of downside risk (loss QRP) and upside risk (gain

QRP) to a large sample of optionable stocks.32

32Reading between the lines, the connection of our findings to the Stambaugh, Yu, and Yuan’s results points
to a link between QRP components and stock overpricing/underpricing which in practice can be appreciated
through valuation ratios such as book-to-market. At times, growth stocks may be seen as expensive and
overvalued, as they are generally perceived by investors as stocks with large upside potential. Consistent
with that view, we find that gain QRP has the highest predictability among firms with low book-to-market
ratio. To the contrary, some investors may prefer value stocks which are generally perceived as undervalued
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To summarize, the cross-sectional predictability by the loss and gain QRP is strong and

reinforced among certain categories of stocks.

7 Conclusion

We decompose the quadratic payoff on a stock into its loss and gain components and measure

the premia associated with their fluctuations using stock and option data from a large cross-

section of firms. The quadratic risk premium (QRP), defined as the difference between

the risk-neutral and physical expectations of quadratic payoff, represents the premium paid

to insure against fluctuating loss uncertainty (loss QRP), net of the premium received to

compensate for fluctuating gain uncertainty (gain QRP). Thus, the loss QRP measures the

downside risk while the gain QRP measures the upside risk of an individual firm.

The QRP is similar by definition to the variance risk premium (VRP) as both measure the

premium associated with stock return uncertainty fluctuations. Our empirical approach for

measuring the QRP and its components conforms with the definition of the premium as the

difference between the risk-neutral and physical expectations of the same quantities, leading

to a consistent, robust and unbiased measures as opposed to the empirical measurement of the

VRP in the extant literature. We quantity significant biases attributable to inconsistencies

in the empirical measurement of the VRP. Our results suggest that such inconsistencies may

impact the cross-sectional valuation of downside and upside risks.

We show that the heterogeneity in the loss and gain QRPs across stocks is associated

with differences in expected returns in the cross-section. Our findings suggest that expected

stock returns in the cross-section are positively related to the loss and gain QRPs. On

the other hand, we find no evidence of a cross-sectional relation between the net QRP and

expected returns. Sorting stocks into portfolios based on their individual loss (gain) QRP

by the market. These investors are however aware of the large downside risk of value firms, induced by
operating leverage (see for example Gaŕıa-Feijóo and Jorgensen, 2010 and Hsieh and Lee, 2010). Consistent
with that view, we find that loss QRP has the highest predictability among firms with high book-to-market
ratio. These results are available in Table B10 in the Internet Appendix.
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results in an economically large monthly risk-adjusted expected return spread between the

stocks in the highest and lowest quintiles of 0.88% (1.30%). The return spreads remain

highly statistically significant and economically important in double-sorting strategies and

in Fama and MacBeth (1973) regressions controlling for exposures to various systematic risk

factors and other firm characteristics.

In particular, while gain VRP is not priced in the cross-section of the stock returns, to

the contrary, gain QRP is. Furthermore, our result regarding the gain QRP shows that the

upside risk is significantly and robustly priced even after the downside risk has already been

accounted for. Since there is little evidence in the literature about the pricing of the upside

risk, this result on gain QRP constitutes an important contribution.

Crucially, our results suggest that when analyzing the relation between expected stock

returns and individual firm QRP, it is imperative to decompose the QRP into its loss and

gain components. An interesting extension of our empirical analysis would be to expand the

cross-section to include international firms. Another interesting empirical extension would

be to examine the cross-sectional relation between the quadratic risk premium and expected

returns for other asset classes such as corporate bonds, currencies and commodities.
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Figure 1: S&P 500 Quadratic Payoff and Realized Variance (Daily Returns)

In Panels A and B of this figure, we plot the time-series of the S&P 500 realized autocovariance (RA) and standardized realized

autocovariance, respectively. In Panel C, we plot the quadratic loss (QL) and loss realized variance (RV), while in Panel D we

plot the quadratic gain (QG) and the gain RV. Realized autocovariance and standardized realized autocovariance are defined

as following:

RA =
r2 −RV

2
, Std RA =

r2 −RV
r2 +RV

.

where r2 is the quadratic payoff, and RV is the realized variance. We obtain the expression for RA by solving for it in Equation

(6). Standardized realized covariance multiplied by 100 yields the percentage of equity uncertainty represented by RA. Realized

autocovariance, and all measures of the quadratic payoff and realized variance are in monthly squared percentage terms. The

sample period is from January 1996 to December 2015.
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Figure 2: Firm Median Loss and Gain QRP

In this figure, in Panel A (B) we plot the cross-sectional median firms’ loss (gain) quadratic risk premium (QRP) in monthly

squared percentage terms. The sample period is from January 1996 to December 2015.
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Table 1: Descriptive Statistics and Cross-Sectional Correlations

In Panel A we report the time-series mean, min, max, standard deviation (StdDev), skewness, excess kurtosis, and persistence

(AR(1)) of the firm-level median and market quadratic risk premium (QRP l, QRP g , QRP ) and risk-neutral skewness (SKEW ).

We also report these statistics for the firm-level median stock illiquidity (ILLIQ), idiosyncratic volatility (IV OL), book-to-

market (B/M), past 12-month cumulative excess return (P12M), and one-month cumulative excess return (P01M). All statistics

are monthly values. The mean, min, max, and standard deviation of QRP are in percentage-square units. The mean, min, max,

and standard deviation of IV OL and P12M/P01M are in percentage units. Following Amihud (2002), ILLIQ is multiplied by

103. In Panel B, we report correlations between our firm-level variables. We compute the correlations in two steps. First, in

each month t we compute cross-sectional correlations among all variables. This yields a monthly time-series of cross-sectional

correlations. Next, we take the time-series average of these correlations, and these are the correlations reported. The sample

period is from January 1996 to December 2015.

Panel A: Descriptive Statistics

Mean Min Max StdDev Skewness Kurtosis AR(1)

QRP l 48.73 10.57 254.83 37.19 2.32 10.86 0.86

QRP g 28.81 11.34 85.97 14.15 1.37 5.14 0.89

QRP 10.71 1.75 135.72 18.55 3.27 17.41 0.75

ILLIQ 4.8e-3 7.9e-4 0.02 1.1e-4 0.90 2.81 0.95

SKEW -0.51 -1.31 0.21 0.22 -0.06 2.50 0.73

IV OL 2.04 1.13 4.16 0.70 0.99 3.20 0.91

B/M 0.45 0.30 1.03 0.09 1.82 8.05 0.93

P12M 6.19 -49.50 68.52 19.45 -0.02 3.80 0.92

P01M 0.32 -22.52 16.78 5.30 -0.69 5.06 0.13

QRP l
m 16.12 0.44 90.64 14.87 1.87 7.42 0.79

QRP g
m 5.17 0.04 54.62 6.52 3.91 24.22 0.58

QRPm 10.94 0.32 94.67 16.31 1.73 6.68 0.70

SKEWm -1.96 -3.79 -0.73 0.59 -0.48 2.88 0.86

Panel B: Cross-sectional Correlations

QRP g QRP ILLIQ SKEW IV OL B/M Size P12M P01M

QRP l 0.38 0.44 0.15 -0.03 0.15 0.05 -0.13 0.01 -2.8e-3

QRP g -0.49 0.14 0.03 0.19 0.01 -0.11 0.09 0.06

QRP 0.10 -0.07 0.11 0.01 -0.06 0.04 0.09

ILLIQ 0.10 0.20 0.09 -0.04 -0.09 -0.02

SKEW 0.15 -0.01 -0.17 0.03 -0.16

IV OL 0.06 -0.15 -0.08 0.11

B/M -0.05 -0.18 -0.08

Size 0.02 0.01

P12M 0.01
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Table 2: Univariate Sorts

In Panel A, at the end of month t we sort firms into quintiles based on their average loss QRP (QRP l) during month t, so

that Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. We then form value-weighted portfolios

of these firms, holding the ranking constant for the next month. Subsequently, we compute cumulative returns during month

t + 1 for each quintile portfolio. We report the monthly average cumulative return in percentage of each portfolio. Similarly,

in Panel B and C, we sort firms into quintiles based on their average gain QRP (QRP g) and net QRP (QRP ), respectively.

Further, we compute the Jensen alpha of each quintile portfolio with respect to the Fama-French five-factor model (Fama and

French, 2015) by running a time-series regression of the monthly portfolio returns on monthly MKT , SMB, HML, RMW , and

CMA. The t-statistics test the null hypothesis that the average monthly cumulative return of each respective portfolio equals

zero, and they are computed using Newey and West (1987) standard errors to account for autocorrelation, and are reported in

parentheses. Significant t-statistics at the 95% confidence level are boldfaced. QRP is reported in monthly square percentage

units. Data are from January 1996 to December 2015.

Panel A: Firm Loss QRP Panel B: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 11.26 28.07 49.41 86.35 268.94 QRP g 5.44 15.26 29.25 56.44 200.74

E [r] 0.04 0.31 0.55 0.75 1.48 1.44 -0.05 0.37 0.38 0.65 1.61 1.66

(0.14) (0.88) (1.33) (1.44) (2.46) (3.16) (-0.17) (1.11) (0.97) (1.31) (2.71) (3.75)

alpha -0.38 -0.22 -0.07 -0.01 0.51 0.88 -0.49 -0.15 -0.23 -0.08 0.81 1.30

(-3.41) (-1.90) (-0.50) (-0.06) (1.97) (3.06) (-4.93) (-1.74) (-1.77) (-0.57) (3.33) (4.42)

Panel C: Firm Net QRP

Quintiles

1 2 3 4 5 5-1

QRP 2.56 7.30 11.18 51.13 177.15

E [r] 0.15 0.30 0.12 0.36 0.18 0.03

(0.42) (0.79) (0.30) (0.71) (0.36) (0.06)

alpha -0.30 -0.22 -0.46 -0.34 -0.71 -0.40

(-2.00) (-1.45) (-2.15) (-1.21) (-1.86) (-0.98)
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Table 3: Conditional Double Sorts on Systematic Risk

Stocks are first sorted in quintiles based on their exposure to systematic risk factors including: Farago and Tédongap (2018) five

GDA factors (market factor, the market downside factor, the downstate factor, the volatility factor and the volatility downside

factor), market loss and gain quadratic risk premium (Bollerslev, Tauchen, and Zhou, 2009), and market risk-neutral skewness

(Chang, Christoffersen, and Jacobs, 2013). Next, stocks within each quintile of the given systematic risk factor exposure are

further sorted in quintiles based on their loss quadratic risk premium in Panel A, and gain quadratic risk premium in Panel B.

The table reports the difference in average excess returns between the top and the bottom quintile (E [r]) based on loss and gain

QRP, and the Jensen alphas with respect to the Fama-French five-factor model (Fama and French, 2015). t-statistics based on

standard errors computed using the Newey and West (1987) procedure are reported in parentheses. Significant t-statistics at

the 95% confidence level are boldfaced. Data are from January 1996 to December 2015.

Panel A: Loss QRP Panel B: Gain QRP

Quintiles Quintiles

1 2 3 4 5 1 2 3 4 5

Market Factor Market Factor

E [r] 1.13 1.16 1.50 1.55 2.20 E [r] 1.62 2.13 2.37 1.79 2.65

(1.97) (2.37) (2.48) (3.54) (3.10) (3.71) (3.80) (5.53) (4.35) (3.60)

alpha 1.00 0.97 1.61 1.72 2.46 alpha 1.63 2.05 2.31 1.64 2.59

(1.99) (2.22) (2.82) (3.65) (3.40) (4.11) (3.73) (5.65) (5.72) (3.34)

Market Downside Factor Market Downside Factor

E [r] 1.92 1.58 1.77 0.59 0.79 E [r] 2.15 1.11 1.72 1.31 2.62

(3.09) (2.87) (3.85) (1.20) (1.98) (3.35) (2.38) (3.16) (2.04) (4.79)

alpha 2.29 1.77 1.59 0.65 1.11 alpha 2.14 1.25 1.82 1.37 2.77

(3.86) (3.39) (4.09) (1.81) (2.24) (3.97) (3.21) (3.80) (2.62) (4.99)

Downstate Factor Downstate Factor

E [r] 1.97 1.86 1.66 0.71 0.29 E [r] 1.92 1.34 1.74 1.20 2.44

(3.32) (3.13) (2.85) (1.99) (0.62) (3.42) (2.25) (4.02) (2.57) (3.87)

alpha 2.24 2.04 1.63 0.88 0.51 alpha 2.06 1.59 1.76 1.17 2.72

(3.86) (2.92) (3.35) (1.98) (1.20) (4.49) (3.06) (4.50) (2.44) (4.59)

Volatility Factor Volatility Factor

E [r] 1.71 1.57 0.73 1.75 1.42 E [r] 2.01 1.90 1.31 1.40 2.59

(2.47) (2.59) (1.86) (3.37) (2.44) (3.12) (3.06) (2.42) (3.44) (3.61)

alpha 2.07 1.86 0.70 1.76 1.48 alpha 2.22 1.99 1.46 1.45 2.80

(3.20) (3.21) (1.99) (3.15) (2.59) (4.02) (3.66) (3.79) (3.10) (3.85)

Volatility Downside Factor Volatility Downside Factor

E [r] 1.33 1.65 0.80 1.48 1.07 E [r] 1.75 2.20 0.78 1.26 2.28

(1.88) (2.97) (2.09) (3.51) (1.47) (2.18) (4.93) (1.72) (2.20) (3.85)

alpha 1.38 1.80 1.04 1.55 1.01 alpha 1.78 2.26 0.88 1.23 2.20

(2.21) (3.44) (3.17) (3.38) (1.50) (2.28) (5.17) (2.56) (3.21) (3.94)

Market Loss QRP Market Gain QRP

E [r] 1.00 1.99 0.89 1.50 1.37 E [r] 1.46 1.70 1.13 2.15 2.63

(1.97) (3.21) (1.73) (3.30) (2.09) (2.30) (3.63) (2.48) (3.81) (6.15)

alpha 1.11 2.13 0.69 1.54 1.71 alpha 1.35 1.71 1.28 2.36 2.69

(2.10) (3.76) (1.54) (3.71) (2.33) (2.68) (4.67) (3.23) (3.97) (5.56)

Market Risk-Neutral Skewness Market Risk-Neutral Skewness

E [r] 3.47 2.37 2.12 3.07 4.60 E [r] 4.02 2.12 2.34 2.77 4.45

(5.90) (5.10) (4.66) (6.33) (7.09) (5.91) (4.69) (5.38) (6.77) (8.15)

alpha 3.14 2.40 2.34 2.87 4.55 alpha 3.75 1.92 2.03 2.60 4.22

(4.30) (4.03) (3.74) (4.87) (5.25) (3.94) (3.90) (4.50) (4.63) (6.59)
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Table 4: Conditional Double Sorts on Firm Characteristics

Stocks are first sorted in quintiles based on different characteristics: implied volatility smirk (Xing, Zhang, and Zhao, 2010;

Yan, 2011), risk-neutral skewness (Bakshi, Kapadia, and Madan, 2003), relative signed jump variation (Bollerslev, Li, and Zhao,

2020), idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006), illiquidity (Amihud, 2002), number of analysts covering

the stock (Hong, Lim, and Stein, 2000), and a proxy for lottery demand (Bali, Cakici, and Whitelaw, 2011), respectively. Next,

stocks within each characteristic quintile are sorted in quintiles based on loss QRP (Panel A), and gain QRP (Panel B). The

table reports the difference in average excess returns between the top and the bottom quintile (E [r]) based on loss or gain

QRP, and the Jensen alphas with respect to the Fama-French five-factor model (Fama and French, 2015). t-statistics based on

standard errors computed using the Newey and West (1987) procedure are reported in parentheses. Significant t-statistics at

the 95% confidence level are boldfaced. Data are from January 1996 to December 2015.

Panel A: Loss QRP Panel B: Gain QRP

Quintiles Quintiles

1 2 3 4 5 1 2 3 4 5

Implied volatility smirk Implied volatility smirk

E [r] 1.99 1.81 1.93 1.37 0.99 E [r] 2.64 1.80 1.94 1.31 1.14

(3.52) (4.63) (3.43) (2.25) (1.42) (3.99) (3.36) (3.02) (2.61) (2.12)

alpha 1.86 2.09 2.11 1.60 1.16 alpha 2.87 1.86 2.14 1.44 1.15

(3.30) (3.84) (3.53) (2.59) (2.11) (4.61) (4.86) (3.67) (3.29) (2.27)

Firm Risk-Neutral Skewness Firm Risk-Neutral Skewness

E [r] 0.71 1.38 1.29 1.81 2.21 E [r] 1.42 1.64 1.85 2.24 2.93

(1.09) (2.82) (2.82) (3.34) (4.25) (2.41) (2.65) (3.69) (3.53) (4.53)

alpha 0.75 1.52 1.45 1.96 2.30 alpha 1.44 1.95 2.01 2.31 2.91

(1.43) (3.17) (3.01) (3.86) (4.01) (2.82) (3.75) (4.62) (3.54) (4.54)

Relative Signed Jump Variation Relative Signed Jump Variation

E [r] 1.06 1.16 1.08 1.46 2.00 E [r] 1.40 1.87 1.39 1.95 2.72

(1.91) (2.03) (1.83) (2.55) (3.02) (3.00) (3.32) (2.37) (3.08) (3.37)

alpha 0.96 1.01 1.01 1.66 2.23 alpha 1.24 2.07 1.51 2.35 2.75

(1.75) (2.05) (1.99) (3.22) (3.97) (3.05) (4.01) (3.23) (3.78) (3.77)

Idiosyncratic Volatility Idiosyncratic Volatility

E [r] 0.65 1.45 1.57 2.03 2.15 E [r] 0.87 1.34 2.41 2.96 3.51

(2.20) (4.16) (2.38) (3.73) (3.59) (2.78) (2.90) (3.60) (3.79) (3.80)

alpha 0.60 1.68 1.32 2.31 2.27 alpha 0.67 1.34 2.29 3.13 3.61

(2.05) (4.24) (2.18) (4.32) (4.23) (2.21) (2.77) (3.24) (3.86) (4.08)

Stock illiquidity Stock illiquidity

E [r] 0.87 1.58 1.28 1.59 1.71 E [r] 1.14 1.86 2.07 2.96 3.86

(1.91) (3.69) (2.74) (3.03) (3.79) (2.93) (3.51) (3.78) (5.09) (4.84)

alpha 1.07 1.67 1.58 1.68 1.83 alpha 1.26 2.12 2.27 2.87 3.85

(2.82) (3.10) (3.69) (3.82) (4.20) (4.11) (4.32) (4.77) (5.51) (4.80)

Analysts’ coverage Analysts’ coverage

E [r] 1.50 1.44 1.50 1.20 0.81 E [r] 2.57 2.21 1.79 1.71 1.30

(2.70) (2.60) (2.60) (2.00) (1.74) (4.08) (3.62) (2.93) (2.99) (3.42)

alpha 1.71 1.49 1.54 1.37 1.07 alpha 2.68 2.21 1.74 1.73 1.44

(3.45) (3.15) (3.22) (2.50) (2.51) (4.32) (4.54) (3.20) (3.51) (5.62)

Lottery demand Lottery demand

E [r] 1.05 1.69 1.77 2.05 2.38 E [r] 0.94 1.48 2.29 2.76 2.80

(4.25) (4.22) (2.55) (2.67) (4.15) (3.74) (3.75) (3.49) (3.52) (3.36)

alpha 0.90 1.68 1.95 1.93 2.68 alpha 0.78 1.54 2.30 3.18 2.68

(3.28) (3.80) (2.75) (2.51) (4.11) (3.19) (3.39) (3.77) (3.82) (3.24)
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Table 5: Triple Sorts on SKEW and Idiosyncratic Volatility

In Panel A, stocks are sorted in terciles based on their loss QRP. Next, stocks within each tercile of loss QRP are further sorted

in terciles based on their gain QRP. Finally, within each tercile of gain QRP stocks are sorted in terciles based on SKEW (Xing,

Zhang, and Zhao, 2010; Yan, 2011). In Panel B, stocks are independently sorted every month in terciles based on their gain

quadratic risk premium (QRP), loss QRP and idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006), respectively.

Next, we take the intersection of these tercile portfolios. We report Jensen alphas with respect to the Fama-French five-factor

model (Fama and French, 2015) for all tercile portfolios as well as for the difference between the top and bottom tercile (H–L).

t-statistics are computed using Newey and West (1987) standard errors, and are reported in parentheses. Significant t-statistics

at the 95% confidence level are boldfaced. The sample period is from January 1996 to December 2015.

Panel A: Conditional Triple Sorts on Loss QRP, Gain QRP, and SKEW

Loss QRP

L M H

Gain QRP Gain QRP Gain QRP

S
K

E
W

L M H L M H L M H

L -0.92 -0.32 0.19 L -0.14 -0.05 1.26 L 1.71 0.61 4.32

M -0.83 -0.52 -0.41 M -0.23 0.53 1.70 M 1.58 -0.07 2.76

H -0.98 -0.26 -0.64 H -0.17 -0.25 0.34 H 0.81 -0.53 2.68

H–L -0.07 0.07 -0.83 H–L -0.03 -0.20 -0.92 H–L -0.90 -1.15 -1.64

(-0.32) (0.23) (-1.72) (-0.11) (-0.52) (-1.89) (-2.18) (-2.63) (-2.88)

Panel B: Unconditional Triple Sorts on Loss QRP, Gain QRP, and IVOL

Loss QRP

L M H

Gain QRP Gain QRP Gain QRP

I
V
O
L

L M H L M H L M H

L -0.67 -0.06 0.44 L 0.04 0.06 0.61 L -0.19 0.42 2.69

M -0.81 -0.48 -0.40 M -0.22 0.26 0.72 M -0.30 0.91 3.65

H -2.28 -1.59 -0.56 H -0.51 -0.61 0.17 H -0.05 -0.07 2.10

H–L -1.61 -1.54 -1.00 H–L -0.54 -0.68 -0.44 H–L 0.13 -0.49 -0.59

(-3.00) (-2.99) (-2.81) (-1.73) (-1.64) (-1.00) (0.26) (-1.08) (-1.34)
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Table 6: Fama-MacBeth Regressions Controlling for Systematic Risk

This table reports the time-series average of the monthly estimated coefficients for different factor models including firm quadratic risk premium

(QRP l, QRP g and QRP ). In each regression from III to VII we include the firm loss and gain quadratic risk premium with different factor models:

CAPM, market skewness factor model (Chang, Christoffersen, and Jacobs, 2013), market quadratic risk premium model (Bollerslev, Tauchen, and

Zhou, 2009), Carhart four-factor model, and the GDA five-factor model (Farago and Tédongap, 2018), respectively. All coefficients are estimated

using the Fama and MacBeth (1973) two-step regression applied on 5150 individual firms. In the first step, we regress six months of daily excess

returns of the 5150 firms on the different factor models to obtain their respective betas. In the second step, we run cross-sectional regressions of

month t + 1 firm excess returns against the estimated betas and firm quadratic risk premium. t-statistics are computed using Newey and West

(1987) standard errors, and are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. Adjusted R2 is reported

in percentage. Data are from January 1996 to December 2015.

I II III IV V VI VII

Cst 0.01 Cst -8.8e-5 Cst 0.01 Cst 0.01 Cst 0.01 Cst 0.01 Cst 0.01
(2.14) (-0.02) (1.38) (1.37) (1.45) (1.31) (1.73)

QRP -0.19 QRP l 0.49 QRP l 0.69 QRP l 0.59 QRP l 0.59 QRP l 0.73 QRP l 0.62
(-1.49) (3.34) (3.71) (3.63) (3.59) (4.13) (3.73)

QRP g 0.98 QRP g 1.12 QRP g 1.12 QRP g 1.16 QRP g 1.17 QRP g 1.16
(5.76) (6.80) (6.95) (7.48) (7.48) (6.90)

βm,CAPM -0.01 βm,SKEW -0.01 βm,BTZ -0.01 βm,CH -0.01 βm,W -0.01
(-1.27) (-1.28) (-1.41) (-0.93) (-1.37)

βMSKEW 0.06 βMQRP l -2.4e-8 βsmb -4.1e-4 βX 1.4e-5
(0.84) (-0.01) (-0.37) (1.86)

βMQRP g 1.2e-6 βhml -7.9e-5 βD 0.26
(0.48) (-0.05) (2.46)

βV IX 4.9e-6 βmom 1.3e-3 βWD -0.01
(0.62) (0.57) (-2.28)

βXD 1.4e-5
(1.59)

Adj. R2 1.17 4.38 7.91 8.34 9.44 12.04 9.71
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Table 7: Fama-MacBeth Regressions Controlling for Other Firm Characteristics

This table reports the time-series average of the monthly estimated coefficients for factor models including

firm quadratic risk premium (QRP l, QRP g and QRP ). In regression VIII we include the firm loss and gain

quadratic risk premium with the relative signed jump variation (RSJ) from Bollerslev, Li, and Zhao (2020).

In regression IX we include the firm loss and gain quadratic risk premium with all the firm characteristics:

RSJ , idiosyncratic volatility (IV OL) computed as in Ang, Hodrick, Xing, and Zhang (2006), past 1-month

cumulative excess return (P01M), past 12-month cumulative excess return (P12M), size, book-to-market

(B/M), illiquidity (ILLIQ), risk-neutral skewness (FSKEW ), the loss and gain realized semi-variances

(RV l and RV g), and firm risk neutral skewness. All coefficients are estimated using the Fama and MacBeth

(1973) two-step regression applied on 5150 individual firms. We run cross-sectional regressions of month t+1

firm excess returns against firm characteristics and firm quadratic risk premium. t-statistics are computed

using Newey and West (1987) standard errors, and are reported in parentheses. Significant t-statistics at

the 95% confidence level are boldfaced. Adjusted R2 is reported in percentage. Data are from January 1996

to December 2015.

I II VIII IX

Cst 0.01 Cst -8.8e-5 Cst 1.0e-4 Cst 0.02
(2.14) (-0.02) (0.03) (1.06)

QRP -0.19 QRP l 0.49 QRP l 0.57 QRP l 0.74
(-1.49) (3.34) (3.36) (4.88)

QRP g 0.98 QRP g 1.00 QRP g 1.23
(5.76) (5.96) (7.94)

RSJ -0.01 RSJ -2.9e-3
(-2.79) (-1.33)

IV OL -0.24
(-1.93)

P01M -0.02
(-1.57)

P12M 1.2e-3
(0.38)

Size -5.5e-4
(-0.81)

B/M 0.01
(2.51)

ILLIQ 0.09
(0.34)

RV l -0.25
(-2.97)

RV g -0.14
(-1.34)

FSKEW 0.01
(5.23)

Adj. R2 1.17 Adj. R2 4.38 Adj. R2 7.91 Adj.R2 11.87
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Loss Uncertainty, Gain Uncertainty, and Expected Stock Returns

Internet Appendix

Abstract

We introduce a new measure for the premium associated with stock return uncer-

tainty fluctuations, termed the quadratic risk premium (QRP), like the variance risk

premium (VRP). Empirical measurement of VRP in the literature does not always con-

form with the premium definition as the difference between risk-neutral and physical

expectations of the same quantity. We quantify significant biases due to this incon-

sistency. In contrast, our QRP measure is consistent, robust and unbiased. We then

decompose the QRP into its gain and loss components and find that both display a

large heterogeneity and are significantly priced in the cross-section of stock returns.

Keywords: Cross-section of stocks, out-of-the-money options, variance risk premium

JEL Classification: G12

This appendix contains additional results that are omitted from the main text for brevity.

Contents

A Derivations and Definitions 1

A.1 Risk-Neutral Moments of Gain and Loss from OTM Options . . . . . . . . . 1

A.2 Measuring Systematic Risk or Firm Characteristics . . . . . . . . . . . . . . 4

B Additional Results 8

B.1 S&P 500 Realized Autocovariance and Intraday Returns . . . . . . . . . . . 8

B.2 Gain and Loss Quadratic Risk Premium and Negative Values . . . . . . . . . 8

B.3 Option Illiquidity, Volatility Spread and the Quadratic Risk Premium . . . . 9



B.4 Loss and Gain Quadratic Risk Premium . . . . . . . . . . . . . . . . . . . . 9

B.5 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B.6 Nonsynchronicity of Option and Stock Markets . . . . . . . . . . . . . . . . 10

B.7 Growth and Value Firms, and Loss and Gain Quadratic Risk Premium . . . 11

3



A Derivations and Definitions

A.1 Risk-Neutral Moments of Gain and Loss from OTM Options

In this section, we prove analytically that V g
t (τ) is the price of the quadratic gain, therefore

V l
t (τ) is the price of the quadratic loss. Consider the function

F (X) =
1

α
ln (1− δ + δ exp (αX))

with 0 ≤ δ ≤ 1 and α > 0. It can easily be verified that F (X) = max (X, 0) if α →

∞, 0 < δ < 1.

Suppose we are interested in computing the risk-neutral moments of the gain component

of the τ -period log returns defined by rt,t+τ = ln
[
St+τ
St

]
. That is, we want to compute

EQ
t

[
gnt,t+τ

]
for n ≥ 2 where gt,t+τ = max (rt,t+τ , 0) .

Observe that

gnt,t+τ = (max (rt,t+τ , 0))n = lim
α→∞
0<δ<1

(F (rt,t+τ ))
n .

It follows that

EQ
t

[
gnt,t+τ

]
= lim

α→∞
0<δ<1

EQ
t [(F (rt,t+τ ))

n] for n ≥ 2. (A.1)

Remark that F (0) = 0 and that F is twice differentiable with

F ′ (X) =
δ exp (αX)

1− δ + δ exp (αX)
= δ exp (α (X − F (X)))

F ′′ (X) = δα (1− F ′ (X)) exp (α (X − F (X))) = α (1− F ′ (X))F ′ (X) =
αδ (1− δ) exp (αX)

(1− δ + δ exp (αX))2 .

Thus we can compute EQ
t [(F (rt,t+τ ))

n] for n ≥ 2 by applying the Bakshi et al. (2003)
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formula

EQ
t [exp (−rτ)H (St+τ )] = exp (−rτ) (H (St)− StH ′ (St)) + StH

′ (St)

+

St∫
0

H ′′ (K)P (t, τ ;K) dK +

∞∫
St

H ′′ (K)C (t, τ ;K) dK
(A.2)

with the twice differentiable function H (S) =
(
F
(

ln
[
S
St

]))n
.

We have

H ′ (S) =
nF ′

(
ln
[
S
St

])(
F
(

ln
[
S
St

]))n−1

S

and

H ′′ (S) =

n

[(
F ′′
(

ln
[
S
St

])
− F ′

(
ln
[
S
St

]))
F
(

ln
[
S
St

])
+ (n− 1)

(
F ′
(

ln
[
S
St

]))2
](
F
(

ln
[
S
St

]))n−2

S2
.

Observe that, since F (0) = 0 and F ′ (0) = δ, for n ≥ 2 we have

H (St) = (F (0))n = 0 and H ′ (St) =
nF ′ (0) (F (0))n−1

St
= 0.

This means that

exp (−rτ) (H (St)− StH ′ (St)) + StH
′ (St) = 0. (A.3)

Now, we are interested in computing

lim
α→∞
0<δ<1

H ′′ (K) .

We have

H ′′ (K) =
n
[
(F ′′ (X)− F ′ (X))F (X) + (n− 1) (F ′ (X))2] (F (X))n−2

K2
where X = ln

[
K

St

]
.

2



For OTM put options, we have K < St or equivalently X < 0. Observe from their

expressions that when α → ∞, 0 < δ < 1, then F (X) → max (X, 0) = 0, F ′ (X) → 0 and

also F ′′ (X)→ 0. This means that

∀K < St lim
α→∞
0<δ<1

H ′′ (K) = 0

and thus

lim
α→∞
0<δ<1

St∫
0

H ′′ (K)P (t, τ ;K) dK =

St∫
0

(
lim
α→∞
0<δ<1

H ′′ (K)

)
P (t, τ ;K) dK

= 0.

(A.4)

For OTM call options, we have K > St or equivalently X > 0. Observe from their

expressions that when α→∞, 0 < δ < 1, then F (X)→ max (X, 0) = X, F ′ (X)→ 1 and

F ′′ (X)→ 0. This means that

∀K > St lim
α→∞
0<δ<1

H ′′ (K) =
n
(
n− 1− ln

[
K
St

])(
ln
[
K
St

])n−2

K2

and thus

lim
α→∞
0<δ<1

∞∫
St

H ′′ (K)C (t, τ ;K) dK =

∞∫
St

(
lim
α→∞
0<δ<1

H ′′ (K)

)
C (t, τ ;K) dK

=

∞∫
St

n
(
n− 1− ln

[
K
St

])(
ln
[
K
St

])n−2

K2
C (t, τ ;K) dK.

(A.5)

Taking the limit of Equation (A.2) when α→∞, 0 < δ < 1, equations (A.3), (A.4) and
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(A.5) imply that

EQ
t

[
exp (−rτ) gnt,t+τ

]
=

∞∫
St

n
(
n− 1− ln

[
K
St

])(
ln
[
K
St

])n−2

K2
C (t, τ ;K) dK for n ≥ 2.

(A.6)

Since Bakshi et al. (2003) show that

EQ
t

[
exp (−rτ) rnt,t+τ

]
=

St∫
0

n
(
n− 1 + ln

[
St
K

]) (
− ln

[
St
K

])n−2

K2
P (t, τ ;K) dK

+

∞∫
St

n
(
n− 1− ln

[
K
St

])(
ln
[
K
St

])n−2

K2
C (t, τ ;K) dK for n ≥ 2,

(A.7)

and given that rnt,t+τ = gnt,t+τ + (−1)n lnt,t+τ where lt,t+τ = max (−rt,t+τ , 0), then it follows

that

EQ
t

[
exp (−rτ) lnt,t+τ

]
=

St∫
0

n
(
n− 1 + ln

[
St
K

]) (
ln
[
St
K

])n−2

K2
P (t, τ ;K) dK for n ≥ 2. (A.8)

A.2 Measuring Systematic Risk or Firm Characteristics

In this section, we provide details on the measurement of the systematic risk factors and

firm characteristics used in the main text.

GDA Factors The five GDA factors depend on two variables: the log market return, rW ,

and changes in the market conditional variance, ∆σ2
W . To measure the unobservable market

conditional variance, we use the physical conditional expected quadratic payoff. Following

Farago and Tédongap (2018, see their Online Appendix), we use short-window regressions

to estimate the stocks’ exposures to the GDA factors. For every month t ≥ 6, we use six
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months of daily data from month t− 5 to month t to run the following regression:

Re
i,s = αi,t + βiW,trW,s + βiWD,trW,sI (Ds) + βiD,tI (Ds) + βiX,t∆σ

2
W,s + βiXD,t∆σ

2
W,sI (Ds) + εi,s,

(A.9)

for each stock i, where Re
i,s is the excess return, rW,s is the market factor, rW,sI (Ds) is

the market downside factor, I (Ds) is the downstate factor, ∆σ2
W,τ is the volatility factor,

∆σ2
W,τ I (Ds) is the volatility downside factor, s denotes daily observations over the six-

month period, t denotes the current month, and Ds is the downside event defined as Ds ={
rW,s − (σW/σX) ∆σ2

W,s < b
}

, where σW = Std [rW,s] and σX = Std
[
∆σ2

W,s

]
are the standard

deviations of market log returns and changes in the market conditional variance, respectively,

and where b is chosen to match a downside probability of 16%.

Market Loss or Gain Quadratic Risk Premium To measure a firm’s exposure to the

market loss or gain QRP, we start with the cross-sectional implications of the general equi-

librium asset pricing model proposed by Bollerslev et al. (2009), which features three factors:

market excess returns, innovations in the market conditional variance, and innovations in

the market variance of variance. Since the model also implies that the market’s total VRP

is solely determined by the variance of variance, and given the bias in measuring VRP and

its components, we substitute the variance of variance factor with the market loss and gain

QRPs and measure the firm’s exposures to these two market QRP components from the

resulting four-factor model. At the end of each month t ≥ 6, using six months of daily data

from month t− 5 to month t, we run the following regression:

Re
i,τ = αi,t + βmi,tRm,τ + βlossi,t ∆QRP b

m,τ + βgaini,t ∆QRP g
m,τ + βvixi,t ∆V IX2

m,τ + εi,τ , (A.10)

where τ refers to daily observations over this period, Re
i,t and Rm,t are firm and market

excess returns, respectively, ∆V IX2
m,τ are changes in the V IX2 index, and ∆QRP b

m,τ and

∆QRP g
m,τ are changes in the market loss and gain QRPs, respectively.
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Market Risk-Neutral Skewness A firm’s exposure to the market risk-neutral skewness

is calculated following Chang et al. (2013), i.e., at the end of each month t ≥ 6, we run the

following regression using six months of daily data from month t− 5 to month t:

Re
i,s = αi,t + βmi,tRm,s + βskewi,t ∆SKEWm,s + εi,s, (A.11)

where s denotes daily observations over this period, Re
i,s and Rm,s are firm and market

excess returns, respectively, and ∆SKEWm,s are changes in the market risk-neutral skewness

SKEWm,s. Our measure of SKEWm,s is based on option data. Following Bakshi et al.

(2003), we define Vm,t (τ), Wm,t (τ), and Xm,t (τ) as the time-t prices of the 30-day quadratic,

cubic, and quartic contracts on the S& P 500 index, respectively, and r denotes the risk-free

rate. Bakshi et al. show that the risk-neutral skewness can be calculated as

SKEWm,t (τ) =
erτWm,t (τ)− 3µm,t (τ) erτVm,t (τ) + 2µm,t (τ)3[

erτVm,t (τ)− µm,t (τ)2
]3/2

, (A.12)

where µm,t (τ) = erτ − 1− e−rτVm,t (τ) /2− e−rτWm,t (τ) /6− e−rτXm,t (τ) /24.

Implied Volatility Smirk For each firm in our sample, we compute the implied volatility

smirk following Xing et al. (2010) and Yan (2011) as the difference between the implied

volatility of out-of-the-money (OTM) puts and at-the-money (ATM) calls. That is,

SKEWi,t = V OLOTMP
i,t − V OLATMC

i,t (A.13)

Firm Risk-Neutral Skewness Our measure of firm-level skewness is based on option

data. Following Bakshi et al. (2003), we define Vi,t (τ), Wi,t (τ), and Xi,t (τ) as the time-

t prices of the 30-day quadratic, cubic, and quartic contracts on the underlying asset i,

respectively, and r denotes the risk-free rate. Bakshi et al. show that the risk-neutral
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skewness can be calculated as

FSKEWi,t (τ) =
erτWi,t (τ)− 3µi,t (τ) erτVi,t (τ) + 2µi,t (τ)3[

erτVi,t (τ)− µi,t (τ)2
]3/2

, (A.14)

where µi,t (τ) = erτ − 1− e−rτVi,t (τ) /2− e−rτWi,t (τ) /6− e−rτXi,t (τ) /24.

Relative Signed Jump Variation For each firm in our sample, we measure the relative

signed jump variation following Bollerslev et al. (2020) as:

RSJi,t =
RV g

i,t −RV b
i,t

RVi,t
. (A.15)

We compute this measure for each day t. To obtain a monthly RSJ , we follow Bollerslev

et al. (2020) and take the average daily RSJ within each month.

Idiosyncratic Volatility Following Ang et al. (2006), we estimate a firm’s idiosyncratic

volatility for month t, IV OLi,t, from the daily time series regression:

Re
i,s = αi,t + βmi,tMKTs + βsmbi,t SMBs + βhmli,t HMLs + εi,s, (A.16)

where s refers to daily observations over month t, Re
i,s and MKTs are firm and market excess

returns, and SMBs and HMLs are the size and the value factor, respectively. Thus, we

have:

IV OLi,t =

√
1

|Di,t| − 1

∑
s∈Di,t

ε2
i,s. (A.17)

where Di,t is the set of days for which relevant data are available for stock i in month t, |Di,t|

is the cardinality of Di,t.
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Stock Illiquidity We follow Amihud (2002) and measure the stock illiquidity as:

ILLIQi,t =
1

|Di,t|
∑
s∈Di,t

|ri,s|
V OLDi,s

, (A.18)

where Di,t is the set of days for which relevant data are available for stock i in month t, |Di,t|

is the cardinality of Di,t, |ri,s| is the daily absolute return of stock i, and V OLDi,s its dollar

volume.

Option Illiquidity We follow Goyenko et al. (2015) and compute the daily option illiq-

uidity as the dollar-volume-weighted average of the relative option quoted spreads. They

use intra-daily National Best Bid and Offer (NBBO) quotes to compute the relative quoted

spread obtained from the Transactions and Quotes database of the NYSE, while we use

end-of-day data from OptionMetrics.

B Additional Results

B.1 S&P 500 Realized Autocovariance and Intraday Returns

In Figure B1, we compute the realized autocovariance and the standardized realized au-

tocovariance for the S&P 500 using intraday 5-min returns. For the computation of the

realized variance we also include overnight returns. Using intraday returns, we find the same

conclusion as in the main text: the S&P 500 realized autocovariance is not negligible.

B.2 Gain and Loss Quadratic Risk Premium and Negative Values

In our main results, we focus on theoretically consistent positive values for the quadratic risk

premium (the loss, gain or net QRPs). In this section we replicate our main single-sorting

results with QRP (the loss, gain or net QRPs) that includes negative values. Table B1

presents the results when we sort stocks based on QRP (the loss, gain or net QRPs) that

8



includes negative values. We see that our main results hold.

B.3 Option Illiquidity, Volatility Spread and the Quadratic Risk

Premium

We use double-sorting strategies to examine whether the asset pricing information in two

other option-based firm characteristics already account for the pricing information embedded

in the firm QRP components. These are option illiquidity defined as in Goyenko et al.

(2015), and the volatility spread (VS) defined as in Bali and Hovakimian (2009) and Cremers

and Weinbaum (2010): the difference between call and put implied volatilities. Table B2

presents results when we sort stocks by their QRP components and control for these two

stock characteristics. All reported “5-1” spreads are statistically significant at the 95% or

higher confidence level.

B.4 Loss and Gain Quadratic Risk Premium

To investigate whether the loss and gain QRPs contain different information about the

cross-section of expected stock returns, we conduct unconditional double sorts where we

first separately sort stocks into quintiles based on the loss and gain QRPs, and then take

the intersection of these quintiles. In Table B3, we see that the two QRP components

are relatively orthogonal to each other. All except one of the reported “5-1” spreads are

statistically significant at the 95% or higher confidence level.

B.5 Robustness Checks

In this section we present results for a range of robustness checks. In Table B4, we present

single-sorting results for two subsample analysis: one excludes the recent financial crisis

(January 1996 - December 2006), and another excludes the IT-crisis (January 2003 - Decem-

ber 2015). In Tables B5-B7, we present single-sorting results for three other measures: two

9



standardized measures of QRP (by the physical or risk-neutral expected quadratic payoff,

respectively), and the biased variance risk premium (VRP) and its loss and gain components.

In Table B8, we present single-sorting results for the subsample of dividend and no-dividend

paying stocks. In Tables B10 and B11, we present single-sorting results for three subsamples

by the firm size: the bottom 30%, the middle 40% and the top 30%. All our main re-

sults hold throughout these robustness checks. It is noteworthy that when using the biased

VRP measure and its loss and gain components, we do not find that upside risk is priced

in the cross-section of expected stock returns. This highlights the importance of using a

consistent, unbiased and robust measure of upside risk like the gain QRP to investigate this

cross-sectional relationship.

B.6 Nonsynchronicity of Option and Stock Markets

Our measures of loss (gain) QRP are in part estimated from closing bid and closing ask

option quotes. The documented predictability of the loss (gain) QRP may simply be driven

by nonsynchronicity. On most days, Option markets close at 4:02PM Eastern Standard Time

(EST), while stock exchanges close at 4:00PM EST.1 As a result, there is at a minimum 2-

minute gap between the last stock transaction and the last recorded options quotes in the

same day. Battalio and Schultz (2006) show that this nonsynchronicity leads to spurious

predictability. OptionMetrics acknowledge this issue and adjust the record of the-end-of-day

quotes at 3:59pm EST after March 5th 2008.2 Therefore, to investigate whether our main

results are driven by nonsynchronicity, we limit the sample to April 2008 to December 2015.

In Table B9, we present results of single-sorts based on loss and gain QRP. We find that our

main results hold in this sample.

1The closing time of the Chicago Board Options Exchange (CBOE) market for options on individual
stocks was 4:10PM EST until June 22, 1997.

2After March 5th 2008, OptionMetrics defines closing bid (ask) at 3:59PM EST across all exchanges
on which the option trades. Thus, after this date there are no nonsynchronicity problems present in the
OptionMetrics data.
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B.7 Growth and Value Firms, and Loss and Gain Quadratic Risk

Premium

In Table B12 we present conditional triple-sorting results when we first sort stocks into tercile

portfolios by their book-to-market ratios. Within each book-to-market tercile portfolio in

Panel A (B), we next sort stocks by their gain QRPs (loss QRPs) into tercile portfolios.

Finally, within each of these nine portfolios, we sort stocks by their loss QRPs (gain QRPs).

We find that the loss QRP has the strongest return predictability among value firms (high

book-to-market), and the gain QRP has the highest return predictability among growth

firms (low book-to-market).
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Figure B1: S&P 500 Quadratic Payoff, Realized Variance, and Realized Autocovariance
(Intraday Returns)

In Panels A and B of this figure, we plot the time-series of the S&P 500 realized autocovariance (RA) and standardized realized

autocovariance, respectively. In Panel C, we plot the quadratic loss (QL) and loss realized variance (RV), while in Panel D we

plot the quadratic gain (QG) and the gain RV. Realized autocovariance and standardized realized autocovariance are defined

as following:

RA =
r2 −RV

2
, Std RA =

r2 −RV
r2 +RV

.

where r2 is the quadratic payoff computed as the squared sum of intraday 5-min returns and overnight returns within each

month. RV is the realized variance computed as the sum of intraday squared 5-min returns and overnight returns within each

month. We obtain the expression for RA by solving for it in Equation 6 from the main paper. Standardized realized covariance

multiplied by 100 yields the percentage of equity uncertainty represented by RA. Realized autocovariance, and all measures of

the quadratic payoff and realized variance are in monthly squared percentage terms. The sample period is from January 1996

to December 2015.
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Figure B2: Distribution of Market Capitalization

In this figure, we plot the distribution of market capitalization across firms during January 1996 and December 2015, respectively.

We also plot the market capitalization distribution during two crises in our sample. One month at the end of the NBER-defined

recession related to the IT-crisis (November 2001), and the second the month of the Lehman Brothers bankruptcy (September

2008). The values in the x-axis are in USD millions. We also report the minimum, maximum, 5th, and 95th quantiles of the

average of market capitalization. There are 5150 firms in our sample.
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Table B1: Univariate Sorts QRP with Negative Values

In Panel A, at the end of month t we sort firms into quintiles based on their average loss QRP (QRP l) during month t, so that

Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. We then form value-weighted portfolios of

these firms, holding the ranking constant for the next month. Subsequently, we compute cumulative returns during month t+ 1

for each quintile portfolio. We report the monthly average cumulative return in percentage of each portfolio. Similarly, in Panel

B and C, we sort firms into quintiles based on their average gain QRP (QRP g) and net QRP (QRP ), respectively. We also

report the Sharpe ratio of the 5-1 portfolio. Further, we compute the Jensen alpha of each quintile portfolio with respect to the

Fama-French five-factor model (Fama and French; 2015) by running a time-series regression of the monthly portfolio returns on

monthly MKT , SMB, HML, RMW , and CMA. The t-statistics test the null hypothesis that the average monthly cumulative

return of each respective portfolio equals zero, and they are computed using Newey and West (1987) standard errors to account

for autocorrelation, and are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. QRP is

reported in monthly square percentage units. Data are from January 1996 to December 2015.

Panel A: Firm Loss QRP Panel B: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l -145.96 8.54 33.00 67.42 231.63 QRP g -59.68 -2.66 14.07 38.42 163.99

E [r] -0.98 0.29 0.98 1.35 2.10 3.08 -0.97 0.17 0.84 0.90 1.98 2.95

(-2.15) (0.98) (2.97) (3.12) (3.92) (7.79) (-2.31) (0.54) (2.77) (2.28) (3.80) (8.51)

alpha -1.59 -0.19 0.43 0.65 1.20 2.79 -1.59 -0.34 0.30 0.25 1.19 2.78

(-7.47) (-1.72) (3.75) (4.02) (4.59) (6.82) (-8.49) (-3.11) (3.26) (2.01) (5.14) (7.94)

Panel C: Firm Net QRP

Quintiles

1 2 3 4 5 5-1

QRP -240.41 -21.57 14.07 51.88 236.54

E [r] 0.10 0.57 0.59 0.71 0.66 0.56

(0.19) (1.79) (2.03) (1.94) (1.45) (1.74)

alpha -0.61 0.05 0.11 0.08 -0.15 0.46

(-3.05) (0.44) (1.66) (0.60) (-0.72) (1.33)
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Table B2: Conditional Double Sorts: Option Illiquidity, Volatility Spread and QRP

In Panel A and B, stocks are sorted every month in quintiles based on option illiquidity defined as in Goyenko, Ornthanalai

and Tang (2015). In Panel C and D, stocks are sorted every month in quintiles based on the volatility spread (VS) defined as

in Bali and Hovakimian (2009) and Cremers and Weinbaum (2010): the difference between call and put implied volatilities.

Then, stocks within each quintile of option illiquidity or VS are further sorted in quintiles based on their loss QRP in Panel A

and C, and gain QRP in Panel B and D. The table reports average value-weighted excess returns for the bottom quintile (1),

the top quintile (5) and for the second (2), third (3) and fourth (4) quintile. We also report the difference in average excess

returns between the top and the bottom quintile (5-1). t-statistics are computed using Newey and West (1987) standard errors,

and are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. The sample period is from

January 1996 to December 2015.

Panel A: Option Illiquidity and Loss QRP Panel B: Option Illiquidity and Gain QRP

Option Illiquidity Option Illiquidity

L
os

s
Q

R
P

1 2 3 4 5 5-1

G
ai

n
Q

R
P

1 2 3 4 5 5-1

1 0.27 -0.12 -0.07 0.06 0.33 0.06 (0.45) -0.14 0.01 -0.01 0.06 0.12 0.26 (1.36)

2 0.15 0.49 0.26 0.44 0.55 0.40 (2.04) 0.29 0.13 0.35 0.31 0.44 0.15 (0.85)

3 0.96 0.45 0.69 0.51 0.97 0.01 (0.05) 0.65 0.49 0.27 0.62 0.56 -0.08 (-0.37)

4 1.07 0.56 0.51 1.14 0.73 -0.33 (-1.10) 1.25 0.44 0.33 0.67 1.17 -0.07 (-0.21)

5 1.62 1.20 1.57 1.65 1.74 0.13 (0.39) 2.53 1.84 1.33 1.43 2.60 0.06 (0.19)

5-1 1.35 1.31 1.65 1.60 1.41 2.67 1.83 1.34 1.37 2.48

(2.56) (2.23) (2.71) (2.75) (2.50) (3.96) (2.76) (2.75) (2.86) (3.97)

Panel C: Volatility Spread and Loss QRP Panel D: Volatility Spread and Gain QRP

Volatility Spread Volatility Spread

L
os

s
Q

R
P

1 2 3 4 5 5-1

G
ai

n
Q

R
P

1 2 3 4 5 5-1

1 -0.33 -0.21 -0.30 0.32 0.68 1.01 (2.98) -0.54 -0.21 -0.22 0.27 0.32 0.87 (2.14)

2 -0.16 -0.07 0.14 0.42 0.53 0.69 (2.06) -0.26 0.08 0.25 0.51 0.79 1.05 (3.49)

3 0.06 0.13 0.67 0.90 1.31 1.25 (3.02) 0.01 0.17 0.61 0.63 0.77 0.75 (2.18)

4 0.93 0.88 1.11 0.75 1.74 0.81 (1.76) 0.50 0.22 0.16 0.77 1.71 1.21 (3.01)

5 1.20 1.34 0.81 1.31 1.88 0.68 (1.12) 2.16 1.06 1.19 1.42 2.83 0.68 (1.11)

5-1 1.53 1.55 1.11 1.00 1.19 2.70 1.27 1.41 1.15 2.51

(2.11) (2.42) (1.72) (2.21) (2.38) (3.39) (2.69) (2.81) (2.60) (3.33)
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Table B3: Unconditional Double Sorts on Loss and Gain Firm QRP

Stocks are sorted every month in quintiles independently based on loss (QRP l) and gain QRP (QRP g). Then, we form portfolios

by taking the intersection of these quintiles. The table reports average value-weighted excess returns for the bottom quintile

(1), the top quintile (5) and for the second (2), third (3) and fourth (4) quintile. We also report the difference in average excess

returns between the top and the bottom quintile (5-1). t-statistics are computed using Newey and West (1987) standard errors,

and are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. Data are from January 1996

to December 2015.

Unconditional Double Sorts on Loss and Gain QRP

Gain QRP

L
os

s
Q

R
P

1 2 3 4 5 5-1

1 -0.14 0.15 0.32 -0.14 1.10 1.24 (2.20)

2 0.02 0.23 0.40 0.59 2.06 2.04 (3.14)

3 0.67 0.39 0.53 0.81 2.28 1.61 (2.42)

4 0.12 0.57 0.70 1.29 2.51 2.39 (3.55)

5 -0.12 0.58 0.87 1.39 3.38 3.48 (3.97)

5-1 0.05 0.43 0.55 1.53 2.21

(0.19) (2.15) (2.60) (2.94) (4.37)
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Table B4: Univariate Sorts on Loss and Gain QRP excluding Crises

In Panel A and C, at the end of month t we sort firms into quintiles based on their average loss QRP (QRP l) during month t, so

that Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. Similarly, in Panel B and D, we sort firms

based on their average gain QRP (QRP g). We then form value-weighted portfolios of these firms, holding the ranking constant

for the next month. Subsequently, we compute cumulative returns during month t + 1 for each quintile portfolio. We report

the monthly average cumulative return in percentage of each portfolio. We also compute the Jensen alpha of each quintile

portfolio with respect to the Fama-French five-factor model (Fama and French; 2015) by running a time series regression of

the monthly portfolio returns on monthly MKT , SMB, HML, RMW , and CMA. The t-statistics test the null hypothesis

that the average monthly cumulative return of each respective portfolio equals zero, and they are computed using Newey and

West (1987) standard errors to account for autocorrelation, and are reported in parentheses. Significant t-statistics at the 95%

confidence level are boldfaced. QRP is reported in monthly square percentage units. In Panel A and B, we focus on the sample

period excluding the financial crisis that runs from January 1996 until December 2006. While in Panel C and D, we focus on

the sample period excluding the IT-crisis that runs from January 2003 until December 2015.

Excluding IT-Crisis

Panel A: Firm Loss QRP Panel B: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 7.58 20.57 36.87 65.58 262.95 5.75 15.57 27.63 49.3 163.06

E [r] 0.16 0.34 0.73 0.81 1.11 0.95 0.21 0.53 0.74 0.60 1.73 1.53

(0.36) (1.12) (1.97) (1.63) (2.05) (2.92) (0.50) (1.38) (1.54) (1.17) (2.24) (3.23)

alpha -0.59 -0.27 -0.16 -0.05 0.05 0.64 -0.44 -0.22 -0.16 -0.33 0.55 0.99

(-4.05) (-2.13) (-0.87) (-0.38) (0.17) (2.95) (-3.68) (-2.20) (-0.71) (-1.89) (1.85) (3.17)

Excluding Financial Crisis

Panel C: Firm Loss QRP Panel D: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 11.40 31.74 59.59 110.27 316.42 6.87 21.29 42.67 83.49 277.93

E [r] 0.38 0.80 1.38 1.67 2.03 1.65 0.28 0.56 0.65 0.71 2.67 2.39

(0.95) (1.63) (2.01) (2.05) (2.14) (2.97) (0.58) (1.02) (0.94) (0.88) (2.54) (3.21)

alpha -0.11 0.42 0.89 1.21 1.63 1.74 -0.28 -0.02 0.27 0.35 2.37 2.65

(-0.51) (1.86) (2.64) (2.71) (2.75) (3.19) (-1.30) (-0.08) (0.59) (0.77) (3.63) (4.76)
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Table B5: Univariate Sorts on Firm QRP Standardized by Physical Expected Quadratic
Payoff

In Panel A, at the end of month t we sort firms into quintiles based on their average standardized loss QRP (QRP l) during

month t, so that Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. We then form value-weighted

portfolios of these firms, holding the ranking constant for the next month. Subsequently, we compute cumulative returns during

month t + 1 for each quintile portfolio. We report the monthly average cumulative return in percentage of each portfolio.

Similarly, in Panel B, C and D, we sort firms into quintiles based on their average standardized gain QRP (QRP g) and

standardized net QRP (QRP ), respectively. We also compute the Jensen alpha of each quintile portfolio with respect to the

Fama-French five-factor model (Fama and French; 2015) by running a time-series regression of the monthly portfolio returns on

monthly MKT , SMB, HML, RMW , and CMA. The t-statistics test the null hypothesis that the average monthly cumulative

return of each respective portfolio equals zero, and they are computed using Newey and West (1987) standard errors to account

for autocorrelation, and are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. Data are

from January 1996 to December 2015.

Panel A: Firm Loss QRP Panel B: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 0.07 0.17 0.29 0.45 1.21 QRP g 0.04 0.10 0.16 0.24 0.40

E [r] -0.09 0.11 0.46 0.66 0.65 0.74 -0.55 -0.03 0.15 0.52 1.49 2.05

(-0.23) (0.30) (1.24) (2.04) (1.50) (2.31) (-1.51) (-0.07) (0.40) (1.47) (3.69) (5.76)

alpha -0.71 -0.43 -0.10 0.11 0.10 0.81 -1.11 -0.63 -0.44 -0.03 0.95 2.06

(-5.59) (-3.38) (-0.88) (0.88) (0.61) (2.51) (-7.35) (-4.23) (-5.24) (-0.31) (3.49) (5.90)

Panel C: Firm Net QRP

Quintiles

1 2 3 4 5 5-1

QRP 0.06 0.17 0.31 0.53 1.76

E [r] 0.36 0.19 0.24 0.17 0.15 -0.21

(1.01) (0.52) (0.64) (0.54) (0.54) (-1.00)

alpha -0.22 -0.38 -0.33 -0.38 -0.38 -0.16

(-1.79) (-3.43) (-2.96) (-2.50) (-2.49) (-0.80)

19



Table B6: Univariate Sorts on Firm QRP Standardized by Risk-Neutral Expected
Quadratic Payoff

In Panel A, at the end of month t we sort firms into quintiles based on their average standardized loss QRP (QRP l) during

month t, so that Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. We then form value-weighted

portfolios of these firms, holding the ranking constant for the next month. Subsequently, we compute cumulative returns

during month t+1 for each quintile portfolio. We report the monthly average cumulative return in percentage of each portfolio.

Similarly, in Panel B and C, we sort firms into quintiles based on their average standardized gain QRP (QRP g) and standardized

net QRP (QRP ), respectively. We also compute the Jensen alpha of each quintile portfolio with respect to the Fama-French

five-factor model (Fama and French; 2015) by running a time-series regression of the monthly portfolio returns on monthly

MKT , SMB, HML, RMW , and CMA. The t-statistics test the null hypothesis that the average monthly cumulative return

of each respective portfolio equals zero, and they are computed using Newey and West (1987) standard errors to account for

autocorrelation, and are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. Data are

from January 1996 to December 2015.

Panel A: Firm Loss QRP Panel B: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 0.07 0.15 0.23 0.31 0.46 QRP g 0.04 0.11 0.18 0.30 0.76

E [r] -0.27 -0.09 0.26 0.81 1.31 1.58 -0.32 0.19 0.18 0.50 1.08 1.40

(-0.65) (-0.24) (0.68) (2.51) (3.88) (4.34) (-0.96) (0.51) (0.50) (1.33) (2.65) (4.61)

alpha -0.89 -0.65 -0.28 0.25 0.77 1.65 -0.86 -0.38 -0.41 -0.07 0.53 1.39

(-5.66) (-5.15) (-2.69) (1.90) (3.19) (4.69) (-5.44) (-2.74) (-3.98) (-0.96) (2.46) (4.64)

Panel C: Firm Net QRP

Quintiles

1 2 3 4 5 5-1

QRP 0.06 0.14 0.22 0.32 0.53

E [r] 0.33 0.15 0.28 0.23 0.20 -0.14

(0.94) (0.41) (0.74) (0.73) (0.68) (-0.64)

alpha -0.26 -0.42 -0.29 -0.32 -0.33 -0.07

(-2.09) (-3.83) (-2.76) (-2.09) (-2.08) (-0.35)
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Table B7: Univariate Sorts on Firm VRP

In Panel A, at the end of month t we sort firms into quintiles based on their average loss VRP (V RP l) during month t, so

that Quintile 1 contains the stocks with the lowest V RP l and Quintile 5 the highest. We then form value-weighted portfolios

of these firms, holding the ranking constant for the next month. Subsequently, we compute cumulative returns during month

t + 1 for each quintile portfolio. We report the monthly average cumulative return in percentage of each portfolio. Similarly,

in Panel B and C, we sort firms into quintiles based on their average gain VRP (V RP g) and net VRP (V RP ), respectively.

We also compute the Jensen alpha of each quintile portfolio with respect to the Fama-French five-factor model (Fama and

French; 2015) by running a time-series regression of the monthly portfolio returns on monthly MKT , SMB, HML, RMW ,

and CMA. t-statistics test the null hypothesis that the average monthly cumulative return of each respective portfolio equals

zero, and they are computed using Newey and West (1987) standard errors to account for autocorrelation, and are reported in

parentheses. Significant t-statistics at the 95% confidence level are boldfaced. V RP is reported in monthly square percentage

units. Data are from January 1996 to December 2015.

Panel A: Firm Loss VRP Panel B: Firm Gain VRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

V RP l 10.41 26.85 49.48 90.27 290.41 4.2 12.63 26.04 52.7 257.59

E [r] -0.30 0.05 0.43 0.69 0.57 0.87 -0.02 0.03 0.44 0.42 0.48 0.50

(-1.08) (0.17) (1.21) (1.44) (0.96) (2.19) (-1.12) (0.10) (1.32) (0.96) (0.10) (1.99)

alpha -1.07 -0.42 -0.12 -0.03 -0.47 0.61 -1.02 -0.46 -0.08 -0.26 -0.82 0.20

(-6.04) (-4.56) (-1.04) (-0.19) (-1.61) (2.17) (-8.21) (-4.20) (-0.79) (-1.44) (-2.98) (0.69)

Panel C: Firm Net VRP

Quintiles

1 2 3 4 5 5-1

V RP 10.61 32.83 65.38 126.5 438.02

E [r] 0.19 0.39 0.16 0.53 0.35 0.16

(0.56) (0.98) (0.40) (0.96) (0.61) (0.35)

alpha -0.26 -0.13 -0.43 -0.17 -0.55 -0.29

(-1.64) (-0.64) (-2.15) (-0.70) (-1.52) (-0.74)
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Table B8: Univariate Sorts on Firm QRP: Dividend and Non-Dividend Stocks

In Panel A and C, at the end of month t we sort firms into quintiles based on their average loss QRP (QRP l) during month t,

so that Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. We then form value-weighted portfolios

of these firms, holding the ranking constant for the next month. Subsequently, we compute cumulative returns during month

t + 1 for each quintile portfolio. We report the monthly average cumulative return in percentage of each portfolio. Similarly,

in Panel B and D, we sort firms into quintiles based on their average gain QRP (QRP g). We also compute the Jensen alpha

of each quintile portfolio with respect to the Fama-French five-factor model (Fama and French; 2015) by running a time-series

regression of the monthly portfolio returns on monthly MKT , SMB, HML, RMW , and CMA. Panel A and B are univariate

sorts using the subsample of firms that do not pay any dividends. Panel C and D are univariate sorts using the subsample of

firms that pay dividends. The t-statistics test the null hypothesis that the average monthly cumulative return of each respective

portfolio equals zero, and they are computed using Newey and West (1987) standard errors to account for autocorrelation, and

are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. QRP is reported in monthly

square percentage units. Data are from January 1996 to December 2015.

Non-Dividend Paying Stocks

Panel A: Firm Loss QRP Panel B: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 17.85 44.8 77.28 129.02 399.12 8.87 23.71 43.69 79.85 240.95

E [r] -0.54 0.53 0.62 0.63 0.77 1.17 -0.48 -0.24 0.28 0.64 0.88 1.36

(-1.10) (1.03) (1.20) (0.83) (1.41) (2.11) (-1.13) (-0.51) (0.57) (0.82) (1.18) (2.92)

alpha -1.04 -0.33 -0.24 -0.02 0.08 1.13 -1.07 -0.87 -0.44 -0.25 0.15 1.23

(-3.49) (-1.35) (-1.25) (-0.22) (0.53) (2.18) (-4.85) (-3.24) (-1.63) (-0.76) (0.38) (3.31)

Dividend Paying Stocks

Panel C: Firm Loss QRP Panel D: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 10.55 25.81 44.75 76.94 225.18 5.03 13.97 26.6 51.32 184.82

E [r] 0.02 0.24 0.53 0.77 1.55 1.53 -0.06 0.37 0.39 0.53 1.55 1.61

(0.07) (0.72) (1.26) (1.47) (2.52) (3.03) (-0.19) (1.16) (0.99) (1.09) (2.63) (3.73)

alpha -0.39 -0.29 -0.07 0.02 0.59 0.97 -0.49 -0.15 -0.22 -0.19 0.76 1.25

(-3.31) (-2.61) (-0.45) (0.08) (1.90) (2.23) (-3.49) (-1.33) (-1.81) (-1.21) (2.44) (3.50)
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Table B9: Univariate Sorts on Firm QRP Nonsynchronicity

In Panel A, at the end of month t we sort firms with beginning of month t stock price higher than 5 USD into quintiles based on

their average loss QRP (QRP l) during month t, so that Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the

highest. We then form value-weighted portfolios of these firms, holding the ranking constant for the next month. Subsequently,

we compute cumulative returns during month t+1 for each quintile portfolio. We report the monthly average cumulative return

in percentage of each portfolio. Similarly, in Panel B, we sort firms into quintiles based on their average gain QRP (QRP g).

We also compute the Jensen alpha of each quintile portfolio with respect to the Fama-French five-factor model (Fama and

French; 2015) by running a time-series regression of the monthly portfolio returns on monthly MKT , SMB, HML, RMW ,

and CMA. The t-statistics test the null hypothesis that the average monthly cumulative return of each respective portfolio

equals zero, and they are computed using Newey and West (1987) standard errors to account for autocorrelation, and are

reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. QRP is reported in monthly square

percentage units. Data are from April 2008 to December 2015.

Panel A: Firm Loss QRP Panel B: Firm Gain QRP

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 12.59 28.75 47.50 78.23 273.49 QRP g 5.95 15.11 26.59 46.86 161.31

E [r] 0.21 0.34 0.62 0.56 1.14 0.93 0.05 0.26 0.54 0.81 1.55 1.50

(0.55) (0.68) (1.55) (1.16) (2.11) (3.18) (0.09) (0.56) (1.18) (1.39) (2.07) (3.00)

alpha -0.38 -0.31 -0.24 -0.29 0.14 0.53 -0.51 -0.42 -0.25 -0.13 0.51 1.02

(-5.45) (-2.97) (-1.48) (-1.53) (0.49) (2.70) (-3.88) (-5.18) (-2.33) (-0.68) (1.28) (2.93)
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Table B10: Univariate Sorts on Firm Loss QRP: Small, Medium and Large Firms

In Panel A, at the end of month t we sort small firms into quintiles based on their average loss QRP (QRP l) during month

t, so that Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. Small firms are in the bottom

30% based on market capitalization. We then form value-weighted portfolios of these firms, holding the ranking constant for

the next month. Subsequently, we compute cumulative returns during month t + 1 for each quintile portfolio. We report the

monthly average cumulative return in percentage of each portfolio. Similarly, in Panel B, and C, we sort medium and large

firms into quintiles based on their average loss QRP (QRP l). Medium and large firms are in the middle 40%, and top 30%

based on market capitalization. We also compute the Jensen alpha of each quintile portfolio with respect to the Fama-French

five-factor model (Fama and French; 2015) by running a time series regression of the monthly portfolio returns on monthly

MKT , SMB, HML, RMW , and CMA. The t-statistics test the null hypothesis that the average monthly cumulative return

of each respective portfolio equals zero, and they are computed using Newey and West (1987) standard errors to account for

autocorrelation, and are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. QRP is

reported in monthly square percentage units. Data are from January 1996 to December 2015.

Panel A: Small Firms Panel B: Medium Firms

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP l 21.69 54.34 91.71 150.93 452.98 13.05 31.37 51.24 81.68 198.33

E [r] 0.15 0.23 0.84 1.49 1.57 1.43 0.01 0.41 0.60 0.82 1.63 1.62

(0.31) (0.53) (1.84) (2.62) (2.37) (2.91) (0.02) (1.08) (1.56) (1.81) (2.88) (3.72)

alpha -0.74 -0.64 -0.04 0.57 0.50 1.24 -0.65 -0.28 -0.15 0.03 0.66 1.32

(-3.64) (-3.15) (-0.15) (1.64) (1.09) (2.64) (-3.84) (-1.46) (-0.92) (0.11) (1.89) (3.21)

Panel C: Large Firms

Quintiles

1 2 3 4 5 5-1

QRP l 7.96 17.31 27.76 44.41 110

E [r] 0.02 0.02 0.27 0.56 0.80 0.78

(0.08) (0.10) (0.89) (1.66) (2.02) (2.40)

alpha -0.37 -0.41 -0.25 -0.04 0.06 0.43

(-2.77) (-3.26) (-2.35) (-0.23) (0.26) (2.22)
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Table B11: Univariate Sorts on Firm Gain QRP: Small, Medium and Large Firms

In Panel A, at the end of month t we sort small firms into quintiles based on their average gain QRP (QRP g) during month

t, so that Quintile 1 contains the stocks with the lowest QRP l and Quintile 5 the highest. Small firms are in the bottom

30% based on market capitalization. We then form value-weighted portfolios of these firms, holding the ranking constant for

the next month. Subsequently, we compute cumulative returns during month t + 1 for each quintile portfolio. We report the

monthly average cumulative return in percentage of each portfolio. Similarly, in Panel B, and C, we sort medium and large

firms into quintiles based on their average gain QRP (QRP g). Medium and large firms are in the middle 40%, and top 30%

based on market capitalization. We also compute the Jensen alpha of each quintile portfolio with respect to the Fama-French

five-factor model (Fama and French; 2015) by running a time series regression of the monthly portfolio returns on monthly

MKT , SMB, HML, RMW , and CMA. The t-statistics test the null hypothesis that the average monthly cumulative return

of each respective portfolio equals zero, and they are computed using Newey and West (1987) standard errors to account for

autocorrelation, and are reported in parentheses. Significant t-statistics at the 95% confidence level are boldfaced. QRP is

reported in monthly square percentage units. Data are from January 1996 to December 2015.

Panel A: Small Firms Panel B: Medium Firms

Quintiles Quintiles

1 2 3 4 5 5-1 1 2 3 4 5 5-1

QRP g 9.27 26.91 50.6 92.52 303.37 5.95 16.43 30.41 55.51 177.98

E [r] -0.30 -0.26 0.48 1.23 2.16 2.46 -0.02 0.29 0.41 0.61 2.01 2.02

(-2.33) (-1.05) (2.28) (4.40) (3.24) (3.35) (-0.14) (2.81) (2.23) (3.07) (4.38) (4.24)

alpha -1.14 -1.13 -0.45 0.23 1.02 2.17 -0.68 -0.42 -0.35 -0.22 1.03 1.71

(-5.06) (-4.32) (-1.80) (0.77) (2.77) (4.47) (-4.10) (-2.62) (-2.00) (-1.25) (2.76) (4.00)

Panel C: Large Firms

Quintiles

1 2 3 4 5 5-1

QRP g 3.94 9.99 17.59 31.05 97.26

E [r] -0.22 0.34 0.25 0.40 0.86 1.08

(-0.78) (1.25) (1.27) (1.40) (2.05) (3.58)

alpha -0.62 -0.14 -0.27 -0.21 0.14 0.75

(-4.33) (-0.77) (-2.27) (-1.67) (0.60) (2.50)
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Table B12: Conditional Triple Sorts on Book-to-Market and QRP

In each panel, stocks are sorted every month in terciles based on their book-to-market. Next, in Panel A (B) stocks within

each tercile of earnings yield are further sorted in terciles based on their gain (loss) QRP. Finally, within each tercile of loss

(gain) QRP stocks are sorted in terciles based on their loss (gain) QRP. We report Jensen alphas with respect to the Fama-

French five-factor model (Fama and French; 2015) for all tercile portfolios as well as for the difference between the top and

bottom tercile (H–L). t-statistics are computed using Newey and West (1987) standard errors, and are reported in parentheses.

Significant t-statistics at the 95% confidence level are boldfaced. The sample period is from January 1996 to December 2015.

Panel A: Conditional Triple Sorts on Book-to-Market, Gain and Loss QRP

Book-to-Market

L M H

Gain QRP Gain QRP Gain QRP

L
os

s
Q

R
P

L M H L M H L M H

L -0.77 -0.93 -0.60 0.08 -0.07 -0.08 0.73 0.79 1.18

M -0.45 -0.61 -0.13 -0.05 -0.18 -0.21 1.95 0.56 1.67

H -0.42 -1.06 -0.20 -0.07 -0.09 0.26 2.83 1.85 3.67

H–L 0.35 -0.13 0.40 -0.15 -0.02 0.35 2.10 1.06 2.49

(1.05) (-0.44) (1.37) (-0.28) (-0.06) (0.59) (2.44) (2.35) (3.98)

Panel B: Conditional Triple Sorts on Book-to-Market, Loss and Gain QRP

Book-to-Market

L M H

Loss QRP Loss QRP Loss QRP

G
ai

n
Q

R
P

L M H L M H L M H

L -0.96 -0.84 -0.09 -0.46 0.02 0.09 -0.56 -0.90 -0.73

M 0.73 0.25 0.74 0.29 -0.09 -0.17 -0.39 -0.82 -0.21

H 3.69 2.36 2.93 0.01 0.57 1.02 -0.19 0.01 0.12

H–L 4.66 3.20 3.02 0.47 0.56 0.93 0.38 0.91 0.85

(4.08) (4.21) (4.69) (1.67) (0.96) (1.38) (1.05) (1.79) (0.96)
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