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1 Introduction

The linear relation between the conditional variance and expected excess stock market re-

turn, as suggested by Merton (1973)’s intertemporal capital asset pricing model (ICAPM),

has drawn a lot of attention in modern finance research. The systematic risk-return trade-off

suggests that, conditional on the information available at each point in time, the condi-

tional excess market return varies with its conditional variance. Even though there is a

vast literature that investigates this relation, it has not been possible to find flawless em-

pirical evidence. The literature finds mostly insignificant, and even negative, systematic

risk-reward trade-offs.

We propose a risk measure that draws mainly from two important observations. First,

the market price of risk is determined by two trends that have opposite pricing effects: the

uncertain upside gain and the uncertain downside risk. It is a strong economic argument

that an investor is willing to pay for potential upside returns but must be compensated

for potential downside losses. Investigating this argument, we obtain empirical results that

provide strong evidence that long-run upside uncertainty has a significant negative pricing

effect, and long-run downside risk a significant positive pricing effect, on short-run equity

market returns. To the best of our knowledge, this is the first paper to provide consis-

tent evidence of the role of upside uncertainty. Second, following Kahneman and Tversky

(1979)’s prospect theory, the finance literature shows that investors care differently about

upside gains than downside losses, and that those who face downside risk require a rel-

ative downside risk premium (Ang et al. 2006). We confirm this insight empirically as

well as theoretically and show that conditional asymmetry forecasts equity market returns.

Our proposed measure of conditional asymmetry is the difference between the realized un-

certainty of upside gains and the realized risk of downside losses: the asymmetric realized

volatility (ARV) measure. The intuition behind this is that we exploit that returns are neg-

atively skewed in particular in high frequency. Our long-run ARV measure is a significant

predictor of short-run equity market returns. Computed using sixty-minute returns, it ex-

plains 1.18%, 4.00% and 10.66% of the total variation in expected one-month, three-month

and six-month returns respectively. This predictive power increases to 3.65%, 10.95% and

21.68% respectively when the ARV measure is based on five-minute returns.
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To strengthen our empirical results, we propose a closed-form consumption-based asset

pricing model that explores the predictive power of the long-run ARV. The model fea-

tures recursive utility with disappointment aversion preferences, and time-varying macroe-

conomic uncertainty measured by the volatility of aggregated consumption. We follow

Bonomo et al. (2011), but calibrate the model at an intra-daily frequency to match the

actual moments of annual consumption and equity dividend growths. The commonly used

Epstein and Zin (1989) preferences, based on the expected utility certainty equivalent for

timeless gambles, fail to generate the upside and downside pricing effects found in actual

data. On the contrary, the Routledge and Zin (2010) preferences, based on a generalized

disappointment aversion certainty equivalent, are able to reproduce the observed patterns.

An investor with generalized disappointment aversion preferences cares more about

downside losses than upside gains, by assigning greater weights to outcomes that may

realize less than the investor’s certainty equivalent. Consequently, the investor is aware of

tail risks. These tail risks are particularly important in intra-daily equity market returns,

since high-frequency returns show high excess kurtosis and negative skewness. Consistent

with this empirical evidence, the model requires a high excess kurtosis of consumption

volatility at a higher frequency, to replicate the empirical findings. In addition to the

observed first and second moments of the equity return, we are able not only to match the

predictive power of the ARV, based on the sixty-minute equity market return series, but

also the sign of the slope estimates and, to a large extent, their magnitude.

Turning to a more detailed review of related literature and related risk factors, we

start with realized volatility, which is one of the most common risk factors. Whereas

Bandi and Perron (2008) show that realized volatility has predictive power for the mar-

ket return in the long run, others, such as Ghysels et al. (2005), develop new measures

that produce reasonable predictions within a shorter period. The realized volatility-based

risk measure is ambiguous, though, and current research is focusing on other possible,

but related, risk measures. Since returns are negatively skewed, a possible approach is

to disentangle realized volatility into upside volatility and downside volatility, implicitly

incorporating the asymmetry of returns into the pricing model.

Despite the fact that the focus of most of the related literature is not on the asymmetry

of returns, there has been growing interest in the asymmetry of equity market returns and
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their volatility over the last twenty years. Asymmetry is present in all major equity markets,

since large negative market returns are more frequent than positive returns, implying a

negative skewness. Supporting evidence comes from Jondeau and Rockinger (2003), who

find that there is negative skewness in major equity markets. Harvey and Siddique (2000)

also show that the skewness of returns is linked to the asymmetry of risk and thus demands

a risk premium. Additionally, they show that the momentum effect is related to systematic

skewness, which implies that an investor who faces a negatively skewed and volatile market

requires a reward for accepting this downside risk.

Recent research by Feunou et al. (2010) models market downside volatility with a bi-

normal GARCH model, deriving a time-varying market price of risk. We follow the non-

parametric approach of Barndorff-Nielsen et al. (2008), who define downside and upside

semivariances as the realized return deviation below and above a specified threshold, based

on high-frequency data. Downside risk is thus the realized return deviation below this

threshold, and upside uncertainty is the return deviation above this threshold. Recent re-

search by Patton and Sheppard (2011) shows that disentangling downside and upside real-

ized semivariance improves forecasts of future volatility, in particular because the downside

realized semivariance is more important.

The price-earnings ratio serves traditionally as a well-established predictor of equity

market returns. We find supporting evidence that the price-earnings ratio is a significant

predictor of future equity returns, but becomes less significant once the ARV measure is

added as a second factor in our predictive regression. The price-earnings ratio remains

mostly significant, in particular for longer horizon predictions, but adds little explanatory

power to our predictive regression. Our evidence here is based on daily returns, though,

while the literature mainly focuses on monthly returns. Our results suggest that the ARV

measure captures similar variation to that captured by the price-earnings ratio, but captures

about twice as much of the variation in equity returns

Recent literature has focused on the variance risk premium (VRP), defined as the dif-

ference between the realized volatility and the implied volatility, and has shown that mea-

suring risk this way improves return predictability significantly (Drechsler and Yaron 2011;

Bollerslev et al. 2010). The VRP is a short-run forward-looking measure that extracts

information from the prices of index options and captures additional information over that
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captured by traditional risk measures. Our backward-looking ARV measure, on the other

hand, is easily extractable from realized return series, and outperforms the VRP, which cap-

tures the same but far less variation in equity returns. Not only the negative correlation

between the ARV measure and the VRP, but also the fact that tail risk (high excess kurto-

sis) is generated by jumps, suggests that our results are consistent with Drechsler and Yaron

(2011). They find that jumps in consumption volatility play an important role in generating

the short-term predictability of excess returns by the VRP.

We carry out further robustness checks in this paper. We show the economic significance

of our results by calculating the maximal achievable increase in the Sharpe ratio. The

results suggest that the increase is quite large. Further, to be confident about our reported

t-statistics, we provide bootstrapped standard errors.

The remainder of the paper proceeds as follows. First, Section 2 presents the method-

ology, showing how the asymmetric conditional risk-return trade-off is empirically investi-

gated. In Section 3, we analyze the data source and provide detailed statistics regarding

both the daily and intra-daily equity market returns. In Section 4, we develop a closed-form

asymmetric asset pricing model that provides a theoretical foundation for our empirical

findings, and discuss the model calibration and results. Finally, in Section 5, we provide

conclusions.

2 Asymmetric Realized Volatility Tests of the Risk-Return Trade-off

In this section, we introduce the asymmetric realized volatility (ARV) measure, to test the

relation between stock market risk and expected return, and present our empirical evidence.

2.1 Methodology

We use logarithmic (log) returns and realized volatility, aggregated over different periods,

based on high-frequency equity log returns.1 We define daily log returns and realized

1To ensure that our analysis is not driven by a few outliers, we winsorize the log returns at the 1% level,
i.e. .5% from the top and .5% from the bottom. This is commonly done in related literature; for example,
Ang et al. (2006) winsorize in their cross-sectional study on downside risk, and Drechsler and Yaron (2011)
winsorize their exogenous variables at the 1% level.
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variances by

rt,t+1 =

1/Δ∑
j=1

rt+jΔ and σ2
t−1,t =

1/Δ∑
j=1

r2t−1+jΔ, (1)

where 1/Δ is the number of high-frequency returns per day, i.e. Δ = 1/8 for a sixty-minute

return series and Δ = 1/85 for a five-minute return series, rt+jΔ denotes the jth intra-daily

return of the current day, rt,t+1 is the current day’s return and σ2
t−1,t the previous day’s

realized volatility.

We aggregate future returns over h days and past realized variances over m days, simply

defined as

rt,t+h =
h∑

l=1

rt+l−1,t+l and σ2
t−m,t =

m∑
l=1

σ2
t−l,t−l+1. (2)

The risk-return trade-off, with realized volatility used as the measure of risk, on high-

frequency data is:

rt,t+h

h
= αmh + β1,mh

σ2
t−m,t

m
+ εmt,t+h. (3)

In their study of the risk-reward trade-off, Feunou et al. (2010) examine the relationship

between reward, as measured by expected returns or the mode of market returns, and

risk, as measured by market volatility or the difference between the downside and upside

volatilities with respect to the mode. The measures of the downside and upside volatilities

are estimated using a binormal GARCH model. In contrast, Barndorff-Nielsen et al. (2008)

introduce new measures of uncertainty, which they call “realized semivariances”, based

entirely on non-parametric high-frequency downward or upward movements in asset prices.

We use the non-parametric method to define analogue daily measures as follows:

(
σ−
t−1,t

)2
=

1/Δ∑
j=1

(
r−t−1+jΔ

)2
and

(
σ+
t−1,t

)2
=

1/Δ∑
j=1

(
r+t−1+jΔ

)2
, (4)

where r−t−1+jΔ = rt−1+jΔI (rt−1+jΔ < μr) and r
+
t−1+jΔ = rt−1+jΔI (rt−1+jΔ ≥ μr), and where

I (·) is an indicator function. The constant threshold μr is the unconditional mean of the

intra-daily returns over the aggregation period.2

2In the following analysis, we use the mean as the threshold. For comparison, we redo our analysis for
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Investors must be compensated for realizations below this threshold, but not for real-

izations above it. We define
(
σ−
t−1,t

)2
as the measure of downside risk and

(
σ+
t−1,t

)2
as the

measure of upside uncertainty. We aggregate upside and downside realized semivariances

over m days,

(
σ−
t−m,t

)2
=

m∑
l=1

(
σ−
t−l,t−l+1

)2
and

(
σ+
t−m,t

)2
=

m∑
l=1

(
σ+
t−l,t−l+1

)2
. (5)

This disentanglement of the realized volatility into upside and downside realized volatil-

ities allows us to test a two-factor asymmetric asset pricing model:

rt,t+h

h
= αmh + β1,mh

(
σ+
t−m,t

)2
m

+ β2,mh

(
σ−
t−m,t

)2
m

+ εmt,t+h, (6)

with an intercept estimate αmh and a slope vector of estimates βmh =
(
β1,mh β2,mh

)�
.

This two-factor model has the advantage that we can directly see the impact of potential

upside gain as well as that of potential downside loss. We would expect to see a negative

pricing effect for upside uncertainty and a positive pricing effect for downside risk. Strong

evidence will follow that supports our hypothesis that investors have to be compensated

for downside risk but are willing to pay for upside potential.

Similar to Barndorff-Nielsen et al. (2008), we define downside realized semivariance and

upside realized semivariance such that their sum equates to the realized volatility itself:

σ2
t−m,t =

(
σ−
t−m,t

)2
+
(
σ+
t−m,t

)2
. (7)

The difference between upside and downside realized semivariance is the ARV measure of

risk. It is defined by

st−m,t =

(
σ+
t−m,t

)2
m

−
(
σ−
t−m,t

)2
m

. (8)

The asymmetric capital asset pricing model with the ARV risk measure becomes:

rt,t+h

h
= αmh + β2,mhst−m,t + εmt,t+h. (9)

As will be shown in the empirical part of this paper, the slope coefficient, β2,mh, is negative

as expected and has a significant pricing effect. The realized asymmetric volatility plays

both the median and the zero threshold, but find no qualitative differences.
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a significant role and represents risk for which an investor has to be compensated. It is

interesting to note that equation 6 can be rewritten as a two-factor model with realized

volatility and the ARV measure as regressors.3

We run linear regressions and correct for heteroskedasticity and autocorrelation (het-

eroskedasticity and autocorrelation-consistent (HAC) standard errors). We use different

lags for the HAC estimator (m + h or max(m, h)), but find they have no impact on our

results.

2.2 Empirical Analysis

We estimate the asymmetric risk-return trade-off using high-frequency stock market re-

turns from February 1986 to September 2010. The intra-daily equity market return series

comes from Olsen Financial Technologies and is their longest available high-frequency re-

turn sample. We use this series of opening S&P 500 index prices as a proxy for the stock

market return. To obtain the backward-looking risk measures, we create measures of the

realized semivariances and the ARV measure.4

The analysis does not qualitatively depend on the frequency of intra-daily trades, but

predictive power increases with frequency despite an increase in microstructure noise. To

illustrate this, we perform our analysis on two different high-frequency returns series, a

sixty-minute and a five-minute series. Table 1 displays summary statistics in the upper

panel for both intra-daily and daily market return series on a non-aggregated level. We

report summary statistics for the full sample and for a subsample from January 1990 to

December 2007. We chose our subsample so that our results would be as comparable as

possible to related literature 5. The intra-daily annualized sixty-minute market return has

a mean of 7.85% and an annualized standard deviation of 7.97%, and is negatively skewed

as well as highly leptokurtic over the entire sample period. The intra-daily annualized five-

3The risk-return trade-off (equation 6) can be rewritten as

Rt,t+h

h
= αmh + β1,mh

σ2
t−m,t

m
+ β2,mhst−m,t + εmt,t+h

but this would not add anything to the analysis, due to the nature of the linear dependence between
realized volatility and its semivariances.

4We follow the literature (e.g. Drechsler and Yaron (2011) or Bollerslev et al. (2010)) and treat the
overnight returns or returns over the weekend as one high-frequency return. For comparison, we also
exclude these, but find this has no impact on our analysis.

5See for example Drechsler and Yaron (2011)
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minute market return has a mean of 8.36% and an annualized standard deviation of 26.41%,

is negatively skewed and has an even higher kurtosis of about 60. The subsample reflects

similar properties, but with a mean return of over 9% for both frequencies and somewhat

less kurtosis. This is not surprising since this sample excludes events such as Black Monday

in 1987 and the recent financial crisis. The lower panel shows the annualized mean and

standard deviation of the long-run realized backward-looking risk measures, for the sixty-

minute return series, at a sample aggregation level of five years.6 Annualized statistics are

provided in squared percentages for the realized volatility, the realized semivolatilities, and

the ARV measure. It is worth mentioning that the squared percentage return for downside

volatility is twice as large as that for upside uncertainty. Further, there is no big difference

between the sample periods; only the ARV measure is less negative in the subsample, which

is not surprising given that some negative shocks are excluded.

[Table 1 about here!]

The main results of this paper are presented in Table 2. The return predictability

regression results for the one-factor asset pricing model with the ARV measure (equation

4) are presented for the longest available respective samples of sixty-minute and five-minute

equity market returns. There are two sets of rows and columns providing the OLS estimates

of a regression with HAC standard errors.7 The rows provide estimates for the sixty-minute

and five-minute return series, for different levels of aggregation: one month (1M), two

months (2M), three months (3M) and six months (6M). The columns show estimates of

the ARV risk measure for two backward-looking aggregation periods. All slope coefficient

estimates are significantly negative and increase in magnitude with an increasing level of

aggregation, as well as with an increasing frequency. An increase in the asymmetry in

returns has a positive pricing effect since it is defined as the difference between upside

uncertainty and downside risk. We will show that the coefficient’s sign and the R2 are

consistent with the theoretical model. The ARV measure explains 3.65% of the total

6For comparison, we vary the aggregation level and find no qualitative difference within a range of three
to six years. For relatively short periods of aggregation, for example up to two years, the results become
sample-dependent (small-sample property) and are therefore excluded from the analysis.

7We run an OLS regression on a daily rolling window. The results are robust for other rolling windows,
such as a weekly rolling window. A monthly rolling window results in a substantial reduction in the number
of observations, and inconsistent results over some samples and data frequencies.
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variation over a monthly (1M) return aggregation period for the five-minute return series.

This figure increases with an increase in the aggregation level of returns; for example, for

the three-month (3M) return aggregation period, we are able to forecast 10.95%. While the

R2 (adjusted) is sensitive to the aggregation period, the significance of the positive pricing

effect of our ARV measure is persistent.

[Table 2 about here!]

Table 3 is structured in the same way as the previous table and contains the regression

results of a two-factor asset pricing model with upside uncertainty and downside risk (equa-

tion 6). The upside uncertainty has a significant negative coefficient, implying that upside

potential has a negative pricing effect. Investors pay for upside potential. The downside

risk has a significant positive coefficient, suggesting that downside risk has a positive pricing

effect. Investors are compensated for bearing downside risk. These results are very persis-

tent and hold for both different aggregation and sample periods. We will show that the

coefficients’ signs and R2 valuesare consistent with the theoretical model. The two-factor

semivariance predictive regression forecasts 4.88% of the total variation for a monthly (1M)

return aggregation period, for the five-minute return series. This increases with increasing

aggregation of returns; for example, for the quarterly (3M) return aggregation period, we

are able to forecast 14.04%.

[Table 3 about here!]

Note that the realized variance is, by construction, the sum of the upside and downside

semivariance. Since these have opposite pricing effects, we would expect, as can be observed

in the empirical literature, to see an underestimation of the coefficient of relative risk

aversion in the traditional risk-reward trade-off model. The empirical results presented

suggest that the impact of the discount is virtually equal to, if not even bigger than, the

price per standard deviation of additional risk. This could serve as an explanation of why

the literature has found even negative relationships between risk and reward.

An R2 of around 4% for the monthly return prediction is much bigger than the R2

of the predictive variables investigated by Campbell and Thompson (2008), who state
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that the variables they investigate are potentially useful for investors. We provide fur-

ther evidence addressing the natural question of whether an R2 of the magnitude we

obtain is economically significant. We follow Cochrane (1999), who uses a theorem by

Hansen and Jagannathan (1991) to derive a relation between the maximum unconditional

Sharpe ratio achievable by a predictive regression and its R2. The relation is

Smax =

√
S2 +R2

1−R2

with S being the unconditional Sharpe ratio. Table 6 gives a detailed overview of all

maximal Sharpe ratios for the ARV predictive regression (Model I) and the two-factor

semivariance predictive regression (Model II). At a monthly frequency, based on the

five-minute equity return series, the annualized unconditional Sharpe ratio, S, is 0.743.

Given that the ARV predictive regression has an R2 of 3.65%, the maximal Sharpe ratio

is 1.013. We observe a similar picture for the bivariate predictive regression model and

different return horizons. Putting this differently, the potential increase is fairly large and

economically meaningful.

[Table 6 about here!]

2.3 Robustness Checks

This section provides evidence regarding the robustness of our results and relates this to

other common predictors.

2.3.1 Related Risk Measures

Recent research on equity return predictability has focused on the forward-looking VRP

as a measure of risk. This is the difference between implied volatility and realized volatil-

ity. We download the daily CBOE S&P 500 Volatility Index (VIX) series from January

1990 to December 2007, construct realized variances from our five-minute equity return

series and compute first a daily and then, by taking the mean, a monthly VRP time series.

Drechsler and Yaron (2011) find that the VRP accounts for about 1.46%− 4.07% of total

variation for a monthly return aggregation level and 5.92% for a quarterly return aggre-

gation level. Using the same sample period as them, from 1990 to 2007, we find that the

VRP predicts 1.75% of quarterly return variation, but nothing for the monthly aggregation
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level. The ARV measure, however, forecasts 4.39% of monthly return variation and 12.47%

of quarterly, for the five-minute return series, as shown in Table 4.

[Table 4 about here!]

Adding the ARV measure as a second factor, the VRP becomes insignificant, and pre-

dictability increases only marginally compared to a regression using the ARV measure only

(Table 5). The price-earnings (P/E) ratio traditionally serves as a well-established predic-

tor of equity market returns.8 To construct a daily (P/E) ratio, we download daily S&P

500 value-weighted and equal-weighted returns, with and without distributions, from the

CRSP database. The (P/E) ratio is given by the following relation:

Pt

Et

≈ Pt

Dt

=

(
rwith
t − rwithout

t

1 + rwithout
t

)−1

The upper two panels of Table 5 give the estimation results for the (P/E) ratio only, as well

as for the two-factor predictive regression using the (P/E) ratio and the ARV measure as

regressors. The P/E ratio predicts 2.17% of monthly and 8.21% of quarterly total equity

market return variation. Including our ARV measure as a second factor decreases the

significance of the P/E ratio and the explanatory power increases only a little compared

to the predictive regression using the ARV measure as the only factor. For the monthly

return prediction, the P/E ratio becomes insignificant and predictability increases from

4.39% to 4.55%. For the quarterly, predictability increases from 12.47% to 13.71%.

[Table 5 about here!]

2.3.2 Alternative Dataset

Since our results and implications should not be driven by our equity return sample, we

have tried to be as general as possible by applying the realized asymmetric volatility risk-

return trade-off not only for different frequencies (sixty minutes and five minutes) and to a

different subsample, but also to an entire different dataset. The daily value-weighted market

return series from Kenneth French’s Data Library (all NYSE, AMEX, and NASDAQ stocks

8The (P/E) ratio is highly persistent and skewed to the left. The literature shows that the (P/E)
ratio predicts expected excess equity returns (see, e.g., Campbell and Shiller (1988)) if it does not predict
dividend growth, which indeed it does not (Cochrane (2008)).
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minus the one-month Treasury bill rate), from July 1963 to September 2010, serves as a

second sample based on daily observations.

Bandi and Perron (2008) investigate the risk-return trade-off using daily realized volatil-

ity as their measure of risk and find significant evidence starting from a return aggregation

period of six years.9 In our asymmetric capital asset pricing model framework, we find that

with this daily equity return series there are significant pricing effects, even using an aggre-

gation period of just three months. Asymmetry matters in daily equity returns as well and

taking it into consideration can increase predictive power markedly. Table 8 shows the es-

timation results for the daily return series. The estimation results for the ARV one-factor

asset pricing model are presented in the top panel (Model I) and those for the semi-

variances two-factor model in the bottom panel (Model II). We show results for return

aggregation periods from one month (1M) up to three years (3Y). The estimates increase in

magnitude as the level of return aggregation increases. The ARV measure forecasts nothing

on a monthly return aggregation level, 0.19% on a quarterly return aggregation level and

9.76% on a three-year return aggregation level. Note that the two-factor model forecasts

even less than the one-factor model for the daily data. To sum up, the same qualitative

pattern for both the ARV one-factor asset pricing model and the realized semivariances

two-factor asset pricing model is preserved for this alternative datasetThe advantage of us-

ing intra-daily data is that, with increasing data frequency, predictive power, particularly

in the short run, also increases.

[Table 8 about here!]

2.3.3 Bootstrapping

Bandi and Perron (2008) show that an incorrect specification of HAC error terms can lead

to over-rejections of the null, and spuriously increasing R2 values. To provide further

confidence that the stated t-statistics reflect the correct level, and no size distortions are

leading to over-rejections of the null of zero slope, we show bootstrapped standard errors in

Table 7. We perform the bootstrap 10,000 times and find, throughout the process, results

that fully reflect the empirical findings presented earlier.

9We replicated Bandi and Perron (2008)’s results and found a very similar pattern.
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[Table 7 about here!]

3 Rationalizing the Empirical Facts

In this section, we further strengthen our previous empirical results by showing that they are

not a statistical fluke, and nor are they contrary to the asset pricing model, but in fact they

reflect a rational economic model where agents care about consumption levels and volatility,

and are aware of lower tail risk in consumption growth. In other words, in this section,

we rationalize, in the context of a consumption-based reduced-form general equilibrium

setting, the empirical evidence on return predictability by the ARV measure, as presented

and discussed in the previous section. Our model borrows from Bonomo et al. (2011),

who use a similar framework to analyze stock market behavior and the predictability of

excess returns and growth rates by the dividend-price ratio. To be coherent and consistent

with the intra-daily data frequency used previously, we construct model dynamics at intra-

daily frequencies. We assume that there are 1/Δ equally-spaced trading periods during

a day, and that day t contains the periods t − jΔ, j = 0, 1, . . . , 1/Δ − 1. For example,

Δ = 1/8 for sixty-minute and 1/85 for five-minute periods. We base our model analysis on

the frequency Δ = 1/8, but our approach and model results are valid and hold for other

intra-daily frequencies as well.

3.1 Model Setup, Assumptions and Asset Pricing Solution

3.1.1 Investor Preferences

We consider an endowment economy where the representative investor has the generalized

disappointment aversion (GDA) preferences described in Routledge and Zin (2010). Fol-

lowing Epstein and Zin (1989), the investor derives utility from consumption, recursively,

as follows:

Vt =

{
(1− δ)C

1− 1
ψ

t + δ [Rt (Vt+Δ)]
1− 1

ψ

} 1

1− 1
ψ

if ψ �= 1

= C1−δ
t [Rt (Vt+Δ)]

δ if ψ = 1.

(10)

The current period lifetime utility Vt is a combination of current consumption Ct, and

Rt (Vt+Δ), a certainty equivalent of next period lifetime utility. With GDA preferences, the
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risk-adjustment function R (·) is implicitly defined by

R1−γ − 1

1− γ
=

∫ ∞

−∞

V 1−γ − 1

1− γ
dF (V )−

(
1

α
− 1

)∫ θR

−∞

(
(θR)1−γ − 1

1− γ
− V 1−γ − 1

1− γ

)
dF (V ) ,

(11)

where 0 < α ≤ 1 and 0 < θ ≤ 1. When α is equalto one, R becomes the Kreps and Porteus

(1978) (henceforth KP) preferences, while Vt represents Epstein and Zin (1989)’s recursive

utility. When α < 1, outcomes lower than θR receive an extra weight (1/α − 1), which

decreases the certainty equivalent. Therefore, the parameter α is interpreted as a measure of

disappointment aversion, while the parameter θ is the percentage of the certainty equivalent

R such that outcomes below it are considered disappointing.10. By overweighting outcomes

below the disappointment threshold, the representative agent is downside risk sensitive.

With KP preferences, the stochastic discount factor in terms of the continuation value of

utility of consumption, is given by

M∗
t,t+Δ = δ

(
Ct+Δ

Ct

)− 1
ψ
(

Vt+Δ

Rt (Vt+Δ)

) 1
ψ
−γ

= δ

(
Ct+Δ

Ct

)− 1
ψ

Z
1
ψ
−γ

t+Δ , (12)

where

Zt+Δ =
Vt+Δ

Rt (Vt+Δ)
=

(
δ

(
Ct+Δ

Ct

)− 1
ψ

Rc,t+Δ

) 1

1− 1
ψ

, (13)

where the second equality in equation (13) implies an equivalent representation of the

stochastic discount factor given by equation (12), based on consumption growth and the

gross return Rc,t+Δ on a claim on the future aggregate consumption stream. In general,

this return is unobservable.

For GDA preferences, the stochastic discount factor may be written as

Mt,t+Δ =M∗
t,t+Δ

(
I (Zt+Δ < θ) + αI (Zt+Δ ≥ θ)

ηEt [I (Zt+Δ < θ)] + αEt [I (Zt+Δ ≥ θ)]

)
, (14)

where η = α + (1− α) θ1−γ and I (·) is an indicator function that takes the value 1 if the

condition is met and 0 otherwise.

10Notice that the certainty equivalent, besides being decreasing in γ, is increasing in α (for 0 < α ≤ 1),
and decreasing in θ (for 0 < θ ≤ 1). Thus, α andθ are also measures of risk aversion, but of different types
than γ.
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3.1.2 Equilibrium Consumption and Dividend Growth Dynamics

Intra-daily consumption and dividend growth rates are assumed to be unpredictable and

heteroskedastic, and their conditional variance and correlation change according to a Markov

variable st, which takes N values, st ∈ {1, 2, . . . , N}, when the economy is assumed to have

N states of nature. The sequence st evolves according to a transition probability matrix P

defined as follows:

P� = [pij]1≤i,j≤N and pij = Prob (st+Δ = j | st = i) . (15)

Following Hamilton (1994), let ζt = est , where ej is theN × 1 vector with all components

equal to zero except for the jth component which is equal to one.

Then, the dynamics of consumption and dividend growth are given by the following:

gc,t+Δ = ln

(
Ct+Δ

Ct

)
= μc + σtεc,t+Δ

gd,t+Δ = ln

(
Dt+Δ

Dt

)
= μd + σd,tεd,t+Δ

(16)

where σt =
√
ω�
c ζt and σd,t = νdσt =

√
ω�
d ζt, and where(

εc,t+Δ

εd,t+Δ

)
| 〈εc,jΔ, εd,jΔ, j ≤ t; ζmΔ, m ∈ Z〉 ∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
. (17)

The scalars μc, μd, νd and ρ are the expected consumption and dividend growth rates,

the ratio of dividend volatility to consumption volatility, and the conditional correlation

between consumption and dividend growths respectively. The vectors ωc and ωd = ν2dωc

contain the conditional variances of the consumption and dividend growth rates respec-

tively, where the component j of a vector refers to the value in state st = j.

3.1.3 Asset Pricing Solution

Asset prices, for example, the price-dividend ratio Pd,t/Dt (where Pd,tis the price of the

portfolio that pays off an amount equal to the equity dividend), the price-consumption ratio

Pc,t/Ct (where Pc,t is the price of the unobservable portfolio that pays off an amount equal

to consumption) and the risk-free simple gross return Rf,t+1, can be derived analytically in

this model. To obtain these asset prices, we need expressions for Rt (Vt+Δ) /Ct, the ratio

of the certainty equivalent of future lifetime utility to current consumption, and Vt/Ct,
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the ratio of lifetime utility to current consumption. The Markov property of the model is

crucial for deriving analytical formulas for these expressions, and we adopt the following

notation:

Rt (Vt+Δ)

Ct

= λ�1zζt,
Vt
Ct

= λ�1vζt,
Pd,t

Dt

= λ�1dζt and Rf,t+Δ =
1

λ�1fζt
. (18)

Solving these ratios amounts to characterizing the vectors λ1z, λ1v, λ1d and λ1f as functions

of the parameters of the consumption and dividend dynamics and of the recursive utility

function defined above. In Appendix A, we provide explicit analytical expressions for these

ratios.

In particular, excess log equity return over the risk-free rate can also be written as

rt+Δ = ζ�t Λζt+Δ +
√
ω�
d ζtεd,t+Δ, (19)

where the components of matrix Λ are explicitly defined by

νij = ln

(
λ1d,j + 1

λ1d,i

)
+ μd + lnλ1f,i. (20)

Given these endogenous high-frequency intra-daily returns, we derive analytical formulas

to assess the model-implied univariate predictability of returns by the asymmetric realized

variance, as well as the bivariate predictability by the combined upside and downside

realized variances.

3.2 The Model-Implied Risk-Return Trade-off

3.2.1 Analytical Formulas for Assessing the Risk-Return Tradeoff

Population values of the drift coefficient αmh, the slope coefficients β1,mh and β2,mh, and

the R2 values of the predictive regressions (6) and (4) can also be derived analytically in

this model. In particular, for specification (6), population values of the intercept αmh, the

slope vector βmh =
(
β1,mh β2,mh

)�
and the coefficient of determination R2

mh are given

by

αmh =
E [rt,t+h]

h
− β1,mh

E
[(
σ+
t−m,t

)2]
m

− β2,mh

E
[(
σ−
t−m,t

)2]
m

βmh =
m

h
Σ−1

m Υmh and R2
mh =

Υ�
mhΣ

−1
m Υmh

V ar [rt,t+h]
,

(21)
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where the 2× 2 symmetric matrix Σm and the 2× 1 vector Υmh are defined by

Σm =

⎡
⎣ V ar

[(
σ+
t−m,t

)2]
Cov

((
σ+
t−m,t

)2
,
(
σ−
t−m,t

)2)
Cov

((
σ+
t−m,t

)2
,
(
σ−
t−m,t

)2)
V ar

[(
σ−
t−m,t

)2]
⎤
⎦

Υmh =

⎛
⎝ Cov

((
σ+
t−m,t

)2
, rt,t+h

)
Cov

((
σ−
t−m,t

)2
, rt,t+h

)
⎞
⎠ .

In the context of the reduced-form general equilibrium asset pricing model previously

described, we provide analytical formulas for the population values defined in equation (21).

These quantities are relevant for assessing the risk-return relation through the predictability

regressions (6) and (4). The expected values in equation (21), as well as the components of

the matrix Σm and of the vector Υmh, may be expressed in terms of the components of the

mean vector, μX , and the autocovariance matrices, ΓX (l), of the stationary vector process

Xt =
(
rt−1,t σ2

t−1,t

(
σ−
t−1,t

)2 (
σ+
t−1,t

)2 )�
.

The components of the vector μX and the matrices ΓX (l) may in turn be expressed in

terms of those of the mean and autocovariance matrices of the stationary vector process

Yt =
(
rt r2t

(
r−t
)2 (

r+t
)2 )�

.

Finally, knowledge of the mean vector and the autocovariance matrices of the process Yt is

sufficient for analyzing the risk-return trade-off implied by equations (6) and (4). To avoid

a lengthy mathematical exposition at this stage, these moments are explicitly derived in

the appendix.

3.2.2 Model Calibration and Basic Asset Pricing Implications

Bonomo et al. (2011) calibrate the consumption process in each monthly decision interval

to match the actual sample mean and volatility of real annual US consumption growth

from 1930 to 2007. In each monthly decision interval, the mean of consumption growth is

calibrated to μM
c = 0.15× 10−2 and its volatility, which is equal to

√
μM
σ , where μM

σ is the

mean of consumption volatility, is calibrated to
√
μM
σ = 0.7305 × 10−2. The volatility of

consumption volatility is σM
σ = 0.6263×10−4, and its persistence is φM

σ = 0.995. The mean

of monthly dividend growth is calibrated to μM
d = μM

c = 0.15×10−2 and its volatility, which
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is equal to νMd times the volatility of consumption growth, is calibrated to νMd = 6.42322.

First, we consider the monthly calibration carried out by Bonomo et al. (2011), but

we set the persistence of consumption volatility to φM
σ = 0.96, which is lower than their

value of 0.995, but matches closely the value estimated from US monthly real per capita

consumption growth data from 1959 to 2010. From the monthly calibration, we derive a

daily calibration that matches the monthly first and second moments, assuming 22 trading

days per month. The mapping that expresses the daily parameters in terms of the monthly

parameters is given in Appendix D.

Next, analogously, from the daily calibration we derive an intra-daily calibration that

matches the daily first and second moments, assuming 1/Δ trading periods per day. That

is, we use an analogue mapping to express the intra-daily parameters in terms of the

daily parameters. Finally, we vary the excess kurtosis of consumption volatility and dis-

cuss the sensitivity of the model results to this parameter. The model-implied annualized

(time-averaged) mean, volatility and first-order autocorrelation of consumption growth are

respectively 1.80%, 2.04% and 0.25%, and are consistent with the observed annual values

of 1.88%, 2.21% and 0.46%, respectively. The corresponding values for dividend growth

are respectively 1.80%, 13.24% and 0.25%, also consistent with the observed annual values

of 1.57%, 13.69% and 0.14%, respectively. Finally, the model-implied correlation between

consumption and dividend growth is 0.40, which matches the observed value of 0.59.

Following Routledge and Zin (2010), asset pricing implications are analyzed for an in-

vestor who exhibits GDA. This warrants the choice of relevant preference parameters,

which are adopted from Bonomo et al. (2011). The latter authors were able to match styl-

ized facts about the equity markets. We decided to restrict ourselves to their choice of

parameters, as we wanted to see how our model would reproduce the empirical predictabil-

ity pattern in Tables 2 and 3, conditional on matching the moments of the equity excess

returns and the risk-free rate. The constant coefficient of relative risk aversion is set to

γ = 2.5. The parameter of disappointment aversion α is equal to 0.3, implying that the

ratio of the investor’s marginal utility of wealth from non-disappointing to disappointing

outcomes is 30%. In addition, θ, which defines the fraction of the certainty equivalent

below which disappointment kicks in, is equal to 0.997. Bonomo et al. (2011) use a level of

θ equal to 0.989, to match the stylized fact regarding asset prices. However, their decision
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interval is monthly. In order to remain consistent with the calibration results based on a

sixty-minute interval, we need to adjust this parameter. The elasticity of intertemporal

substitution (EIS) ψ is equal to 1.50, implying that the investor prefers the early resolution

of uncertainty. The one-period subjective discount factor is kept constant at δ = 0.9989

for a monthly frequency.

[Table 9 about here!]

To reproduce the empirical results, an important factor that the models must incor-

porate is the high excess kurtosis of (sixty-minute) consumption volatility, consistent with

the high excess kurtosis found in high-frequency equity returns. By increasing the kurtosis

of consumption volatility, however, we generate a lower and more volatile risk-free rate,

as shown in Table 9, as well as a higher equity premium and more volatile excess equity

returns. Overall, Table 9 shows that the model-implied moments of asset prices are compa-

rable to their data counterparts. High kurtosis in consumption volatility is also consistent

with large jumps in volatility, as in Drechsler and Yaron (2011), who show that this feature

is necessary in the asset pricing model in order to reproduce the short-run predictability

of excess returns by the VRP. Our benchmark calibration corresponds to a large jump in

the sixty-minute consumption volatility, generated by an excess kurtosis of κσ = 100. We

further compare our previous empirical findings to the model results corresponding to this

scenario. We also show results for three alternative scenarios, corresponding to κσ = 75,

κσ = 50 and κσ = 25.

3.2.3 Model Implications for the High-Frequency Risk-Return Trade-Off

Figure 1 shows the model-implied regression coefficients and R2 values for the univariate

predictability of one-, three- and six-month excess returns by the ARV. We compare the

numbers in the figure to the numbers in the top panel of Table 2, which correspond to

realized semivariance calculations based on sixty-minute returns. First, the slope coefficient

is negative, as in the data, so that an increase in the long-run ARV forecasts low future

returns. Second, the pattern and the magnitudes of the regression coefficients and the

R2 values are consistent with the empirical findings. The three top graphs in Figure 1

show that the model-implied regression coefficients increase with the maturity h of the
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predicted returns, just as in the data. Empirically, the five-year ARV forecasts one-, three-

and six-month returns with regression coefficients of −0.11, −0.20 and −0.33 respectively.

The corresponding numbers in the model are approximately −0.12 , −0.20 and −0.27.

Meanwhile, the R2 values are 1.18%, 4.00% and 10.66% in the data, with model-implied

values of approximately 1.15%, 4.00% and 7.50%, as shown in the three bottom graphs in

Figure 1, again matching the empirical values.

[Figure 1 about here!]

Similarly, Figure 2 shows the model-implied regression coefficients and R2 values for

the bivariate predictability of one-, three- and six-month excess returns by the upside and

the downside semivariances. The numbers in the figure are compared to the numbers in

the top panel of Table 3, corresponding to the realized semivariance calculations based on

sixty-minute returns. First, the coefficient of upside realized semivariance is negative and

that of downside realized semivariance is positive, as in the data, so that expected returns

reflect a premium for downside variance and a discount for upside variance. Second, the

pattern and magnitudes of the regression coefficients and R2 values are also consistent with

the empirical findings. The three top and three bottom graphs in Figure 2 show that the

model-implied regression coefficients increase with the maturity h of the predicted returns,

just as in the data. The R2 values are 1.89%, 5.71% and 13.14% in the data, matched once

again by their model-implied values of approximately 1.80%, 5.00% and 9.00%, as shown

in the three bottom graphs of Figure 2. Overall, our empirical findings are validated by

the theoretical predictions of our proposed model.

[Figure 2 about here!]

It is important to notice that a sufficiently high value for the excess kurtosis of con-

sumption volatility is an important ingredient, ensuring the model generates the required

empirical pattern and magnitude of regression coefficients and R2. Another important

feature of the model is (generalized) disappointment aversion. We present model results

corresponding to an economy where the representative investor does not have an aversion

to downside losses as he/she would with (generalized) disappointment aversion preferences.

We consider a KP investor (α = 1), with a risk aversion parameter γ = 15 and an elasticity
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of intertemporal substitution ψ = 1.5. Basic asset pricing implications in such an economy

are given in Table 10. Overall, the KP preferences match the mean of the price-dividend

ratio and the risk-free rate, and the mean and volatility of excess equity returns, for a

sufficiently large value of excess kurtosis. However, the implied R2 of the predictability of

excess equity returns by the price-dividend ratio is less than 1%, inconsistent with the em-

pirical findings. These model results corroborate earlier findings by Beeler and Campbell

(2012) and Bonomo et al. (2011) in their empirical assessments of the long-run risk model

of Bansal and Yaron (2004), based on KP preferences.

[Figure 3 about here!]

For the KP preferences, we plot the regression coefficients and R2 values of the bivari-

ate predictability of excess returns by the realized semivariances, in Figure 3. The two

top graphs show that the coefficient of upside realized semivariance is negative and that of

downside realized semivariance is positive, as in the data. However, the maximum model-

implied R2 in the bottom-right graph is approximatley 0.40% for all horizons of excess

returns and realized semivariances. This shows that the KP preferences cannot reproduce

the pattern and magnitudes found empirically, and that aversion to downside losses is an

essential feature in making consistent theoretical predictions. The bottom-left graph of Fig-

ure 3 shows that the magnitude of the regression coefficient for the univariate predictability

by the ARV is too small compared to the empirical values. Finally, we observe that jumps

in volatility have an opposite effect on the theoretical prediction than they do in the case

of (generalized) disappointment aversion preferences. Higher excess kurtosis of volatility

generates a lower predictability R2 when using KP preferences.

4 Conclusion

This paper offers evidence of the relationship between expected market returns and realized

semivariances. The fundamental intuition behind our approach is based on the strong eco-

nomic argument that expected returns should not only include rewards for accepting the

risk of a potential loss, but also discounts for potential upside gains. In other words, an in-

vestor is willing to accept a lower expected return for upside potential, but requires a higher

expected return for downside risk. We investigate this insight empirically with intra-daily
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high-frequency equity market returns, and find that upside volatility has a negative effect

on expected returns, whereas downside volatility has a positive one. Economists know that

investors care differently about potential downside losses versus potential upside gains. In-

vestors require additional compensation for downside market movements. We show that

asymmetry improves the predictive power of equity returns significantly. Asymmetry in

returns does matter. We find evidence of this both using various subsamples and different

high-frequency equity return series. With increasing frequency, short-run predictability

also increases. We formalize our findings in a closed-form asset pricing model that incor-

porates disappointment aversion and time-varying consumption volatility. To reproduce

the empirical results, the model should be able to match the high excess kurtosis found in

high-frequency data, consistent with the possibility of jumps in volatility put forward in

earlier studies. The model produces qualitatively similar results to our empirical studies.

We propose a backward-looking ARV measure, which can easily be extracted from realized

return series, and which outperforms the price-earnings ratio, as well as the forward-looking

VRP, in capturing equity return variation.
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Appendix

A Markov Chain, Stochastic Discount Factor and Valuation Ratios

The Markov chain is stationary with ergodic distribution and second moments given by:

E [ζt] = Π ∈ R
N
+ ,

E
[
ζtζ

�
t

]
= Diag (Π1, ..,ΠN) and V ar [ζt] = Diag (Π1, ..,ΠN)− ΠΠ�,

(A.1)

where Diag (u1, .., uN) is the N ×N diagonal matrix whose diagonal elements are u1,..,uN .

We show that the stochastic discount factor Mt,t+Δ can also be written as

Mt,t+Δ = δ∗t,t+Δ exp (−γgc,t+Δ)

[
1 +

(
1

α
− 1

)
I (gc,t+Δ < −gv,t+Δ + ln θ)

]
(A.2)

where

ln δ∗t,t+Δ = ζ�t Aζt+Δ and gv,t+Δ = ζ�t Bζt+Δ (A.3)

and where the components of matrices A and B are explicitly defined by

aij = ln δ +

(
1

ψ
− γ

)
bij − ln

[
1 +

(
1

α
− 1

)
θ1−γ

N∑
j=1

pijΦ (qij)

]

bij = ln

(
λ1v,j
λ1z,i

)
and qij =

−bij + ln θ − μc,i√
ωc,i

.

(A.4)

Proposition A.1 Characterization of Welfare Valuation Ratios. Let

Rt (Vt+Δ)

Ct
= λ�1zζt and

Vt
Ct

= λ�1vζt

respectively denote the ratio of the certainty equivalent of future lifetime utility to current
consumption and the ratio of lifetime utility to consumption. The components of the vectors
λ1z and λ1v are given by:

λ1z,i = exp

(
μc,i +

1− γ

2
ωc,i

)(
N∑
j=1

p∗ijλ
1−γ
1v,j

) 1
1−γ

(A.5)

λ1v,i =

{
(1− δ) + δλ

1− 1
ψ

1z,i

} 1

1− 1
ψ

if ψ �= 1 and λ1v,i = λδ1z,i if ψ = 1, (A.6)

where the matrix P ∗� =
[
p∗ij
]
1≤i,j≤N

is defined in A.10.
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Proposition A.2 Characterization of Asset Prices. Let

Pd,t

Dt
= λ�1dζt,

Pc,t

Ct
= λ�1cζt and Rf,t+Δ =

1

λ�1fζt

respectively denote the price-dividend ratio, the price-consumption ratio and the risk-free
rate. The components of the vectors λ1d, λ1c, and λ1f are given by:

λ1d,i = δ

(
1

λ1z,i

) 1
ψ
−γ

exp
(
μcd,i +

ωcd,i

2

)(
λ

1
ψ
−γ

1v

)�
P ∗∗

(
Id− δA∗∗

(
μcd +

ωcd

2

))−1

ei

(A.7)

λ1c,i = δ

(
1

λ1z,i

) 1
ψ
−γ

exp
(
μcc,i +

ωcc,i

2

)(
λ

1
ψ
−γ

1v

)�
P ∗

(
Id− δA∗

(
μcc +

ωcc

2

))−1

ei (A.8)

λ1f,i = δ exp

(
−γμc,i +

γ2

2
ωc,i

) N∑
j=1

p̃∗ij

(
λ1v,j
λ1z,i

) 1
ψ
−γ

(A.9)

where the vectors μcd = −γμc + μd, ωcd = ωc + ωd − 2γρ � √
ωc � √

ωd, μcc = (1− γ)μc,

ωcc = (1− γ)2 ωc, and the matrices P ∗∗� =
[
p∗∗ij

]
1≤i,j≤N

and P̃ ∗� =
[
p̃∗ij
]
1≤i,j≤N

as well as

the matrix functions A∗∗ (u) and A∗ (u) are defined in (A.12), (A.13), (A.11) and (A.14),
respectively. The vector ei denotes the N × 1 vector with all components equal to zero but
the ith component is equal to one.

The components of the matrix P ∗� =
[
p∗ij
]
1≤i,j≤N

in (A.5) and (A.8), and the matrix

function A∗ (u) also in (A.8) are defined by:

p∗ij = pij
1 + (1/α− 1)Φ

(
qij − (1− γ)

√
ωc,i

)
1 + (1/α− 1) θ1−γ

N∑
j=1

pijΦ (qij)

(A.10)

A∗ (u) = Diag

(
exp

((
1

ψ
− γ

)
b11 + u1

)
, ..., exp

((
1

ψ
− γ

)
bNN + uN

))
P ∗, (A.11)

where Φ (·) denotes the cumulative distribution function of a standard normal random

variable.

The matrix P ∗∗� =
[
p∗∗ij

]
1≤i,j≤N

in (A.7), and the matrix P̃ ∗� =
[
p̃∗ij
]
1≤i,j≤N

in (A.9)
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have their components given by:

p∗∗ij = pij
1 + (1/α− 1) Φ

(
qij −

(
ρi
√
ωd,i − γ

√
ωc,i

))
1 + (1/α− 1) θ1−γ

N∑
j=1

pijΦ (qij)

(A.12)

p̃∗ij = pij
1 + (1/α− 1) Φ

(
qij + γ

√
ωc,i

)
1 + (1/α− 1) θ1−γ

N∑
j=1

pijΦ (qij)

. (A.13)

The matrix function A∗∗ (u) in (A.7) is defined by:

A∗∗ (u) = Diag

(
exp

((
1

ψ
− γ

)
b11 + u1

)
, ..., exp

((
1

ψ
− γ

)
bNN + uN

))
P ∗∗. (A.14)

B Population Moments of the Daily Vector Process X

The autocovariance matrices of the vector process Xt are defined by

ΓX (l) = Cov (Xt, Xt+l) =

⎡
⎢⎢⎣
γX11 (l) γX12 (l) γX13 (l) γX14 (l)
γX21 (l) γX22 (l) γX23 (l) γX24 (l)
γX31 (l) γX32 (l) γX33 (l) γX34 (l)
γX41 (l) γX42 (l) γX43 (l) γX44 (l)

⎤
⎥⎥⎦ . (A.15)

The variances of long-horizon returns, long-horizon realized variance and long-horizon

realized semivariances, as well as their covariances, can be expressed as follows:

V ar

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

rt,t+h

σ2
t,t+h(

σ−
t,t+h

)2(
σ+
t,t+h

)2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ = V ar

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

rt−h,t

σ2
t−h,t(

σ−
t−h,t

)2(
σ+
t−h,t

)2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ = hΓX (0) +

h−1∑
l=1

(h− l)
(
ΓX (l) + ΓX (l)�

)
.

(A.16)

The covariance of future long-horizon returns with past long-horizon realized variance

can be expressed as follows:

Cov
(
σ2
t−m,t, rt,t+h

)
= min(m, h)

max(m,h)∑
l=min(m,h)

γX21 (l) +

min(m,h)−1∑
l=1

l
(
γX21 (l) + γX21 (m+ h− l)

)
,

(A.17)

and similar formulas are obtained for the covariances of future long-horizon returns with

past long-horizon semivariances, Cov
((
σ−
t−m,t

)2
, rt,t+h

)
and Cov

((
σ+
t−m,t

)2
, rt,t+h

)
, by re-

placing γX21 with γX31 and γX41, respectively.

25



The covariance of past long-horizon returns with future long-horizon realized variance

can be expressed as follows:

Cov
(
rt−m,t, σ

2
t,t+h

)
= h

max(m,h)∑
l=min(m,h)

γX12 (l) +

min(m,h)−1∑
l=1

l
(
γX12 (l) + γX12 (m+ h− l)

)
, (A.18)

and similar formulas are obtained for the covariances of past long-horizon returns with

future long-horizon semivariances, Cov
(
rt−m,t,

(
σ−
t,t+h

)2)
and Cov

(
rt−m,t,

(
σ+
t,t+h

)2)
, by

replacing γX12 with γX13 and γX14, respectively.

We also have that ∀l and ∀n, q ∈ {1, 2, 3, 4},

γXnq (l) =
1

Δ
γYnq

(
l

Δ

)
+

1/Δ−1∑
j=1

(
1

Δ
− j

)(
γYnq

(
l

Δ
+ j

)
+ γYnq

(
l

Δ
− j

))
. (A.19)

C Population Moments of the Intra-Daily Vector Process Y

The autocovariance matrices of the vector process Yt are defined by

ΓY (j) = Cov (Yt, Yt+jΔ) =

⎡
⎢⎢⎣
γY11 (j) γY12 (j) γY13 (j) γY14 (j)
γY21 (j) γY22 (j) γY23 (j) γY24 (j)
γY31 (j) γY32 (j) γY33 (j) γY34 (j)
γY41 (j) γY42 (j) γY43 (j) γY44 (j)

⎤
⎥⎥⎦ . (A.20)

We recall the property ∀j ≥ 0, Et [ζt+jΔ] = P jζt. Let Y
(n)
t denotes the nth component

of the vector process Yt, for example Y
(3)
t ≡ (

r−t
)2
.

We also recall that for a standard normal random variable ε and a real scalar z, one

has E [εnI (ε < z)] = fn (z), where the sequence {fn (z)}n∈N is given by the linear recursion

fn (z) = (n− 1) fn−2 (z) − zn−1φ (z), with the two initial conditions f0 (z) = Φ (z) and

f1 (z) = −φ (z), and where φ (·) and Φ (·) are respectively the PDF and the CDF of a

standard normal.

We now adopt the following notations, ∀n, q ∈ {1, 2, 3, 4}:

Et

[
Y

(n)
t+Δ | ζmΔ, m ∈ Z

]
= ζ�t U

(n)ζt+Δ,

Et

[
Y

(n)
t+ΔY

(q)
t+Δ | ζmΔ, m ∈ Z

]
= ζ�t U

(nq)ζt+Δ.
(A.21)
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We show that:

U (1) = Λ and U (2) = (Λ� Λ) + ωde
� and U (4) = U (2) − U (3)

U (3) = (Λ� Λ)� f0 (Z) + 2Λ� (√
ωde

�)� f1 (Z) +
(
ωde

�)� f2 (Z)
(A.22)

and where the matrix Z is defined by

Z =
(
μree

� − Λ
)� (√

ωde
�) .

We also show that:

U (11) = (Λ� Λ) + ωde
�

U (12) = U (21) = (Λ� Λ� Λ) + 3Λ� (
ωde

�)
U (13) = U (31) = (Λ� Λ� Λ)� f0 (Z) + 3 (Λ� Λ)� (√

ωde
�)� f1 (Z)

+ 3Λ� (
ωde

�)� f2 (Z) +
(
(ωd �√

ωd) e
�)� f3 (Z)

U (14) = U (41) = U (12) − U (13)

U (22) = (Λ� Λ� Λ� Λ) + 6 (Λ� Λ)� (
ωde

�)+ 3 (ωd � ωd) e
�

U (23) = U (32) = U (33) = (Λ� Λ� Λ� Λ)� f0 (Z) + 4 (Λ� Λ� Λ)� (√
ωde

�)� f1 (Z)

+ 6 (Λ� Λ)� (
ωde

�)� f2 (Z) + 4Λ� (
(ωd �√

ωd) e
�)� f3 (Z)

+
(
(ωd � ωd) e

�)� f4 (Z)

U (24) = U (42) = U (44) = U (22) − U (23)

U (34) = U (43) = 0.

(A.23)

The matrix operators � and � denote the component-by-component multiplication and

division, respectively. Furthermore, functions of matrices are component-wise.

We also adopt the following notations, ∀n, q ∈ {1, 2, 3, 4}:

Et

[
Y

(n)
t+Δ+jΔ

]
=
(
Ψ

(n)
0

)�
P jζt,

Et

[
Y

(n)
t+ΔY

(q)
t+Δ+jΔ

]
=
(
Ψ

(nq)
j

)�
ζt, ∀j ≥ 0.

(A.24)
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We show that, ∀n, q ∈ {1, 2, 3, 4}:

Ψ
(n)
0 is the diagonal of the matrix U (n)P,

Ψ
(nq)
0 is the diagonal of the matrix U (nq)P,

Ψ
(nq)
j is the diagonal of the matrix

(
U (n) �

(
e
(
Ψ

(q)
0

)�
P j−1

))
P, ∀j ≥ 1.

(A.25)

Finally we have that, ∀n, q ∈ {1, 2, 3, 4}:

μY
n = E

[
Y

(n)
t

]
=
(
Ψ

(n)
0

)�
Π,

γYnq (j) =

((
Ψ

(nq)
j

)�
Π

)
−
((

Ψ
(n)
0

)�
Π

)((
Ψ

(q)
0

)�
Π

)
, ∀j ≥ 0.

(A.26)

D Model Calibration and Implications for the Risk-Return Tradeoff

Our calibration of the dynamics (16) is as follows. We first consider the random walk

model, written at a monthly decision interval as:

gMc,t+1 = μM
c + σM

t ε
M
c,t+1

gd,t+1 = μM
d + νMd σtε

M
d,t+1(

σM
t+1

)2
=
(
1− φM

σ

)
μM
σ + φM

σ

(
σM
t

)2
+ νMσ ε

M
σ,t+1

(A.27)

where ⎛
⎝ εMc,t+1

εMd,t+1

εMσ,t+1

⎞
⎠ | JM

t ∼ NID
⎛
⎝
⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝ 1 ρM 0

ρM 1 0
0 0 0

⎞
⎠
⎞
⎠ .

Next, we consider an analogue model at a daily decision interval. This analogue is given

by:

gDc,t+Δ = μD
c + σD

t ε
D
c,t+Δ

gDd,t+Δ = μD
d + νDd σ

D
t ε

D
d,t+Δ(

σD
t+Δ

)2
=
(
1− φD

σ

)
μD
σ + φD

σ

(
σD
t

)2
+ νDσ ε

D
σ,t+Δ

(A.28)

28



where Δ = 1/22 and where⎛
⎝ εDc,t+Δ

εDd,t+Δ

εDσ,t+Δ

⎞
⎠ | JD

t ∼ NID
⎛
⎝
⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝ 1 ρD 0

ρD 1 0
0 0 0

⎞
⎠
⎞
⎠ .

Assuming that the aggregate daily processes
1/Δ∑
j=1

gDc,t+jΔ,
1/Δ∑
j=1

gDd,t+jΔ and
1/Δ∑
j=1

(
σD
t+jΔ

)2
have the same first and second moments as the monthly processes gMc,t+1, g

M
d,t+1 and

(
σM
t+1

)2
,

respectively, we show that parameters for the daily decision interval are defined in terms

of the monthly parameters as:

μD
c = ΔμM

c , μD
d = ΔμM

d , μD
σ = ΔμM

σ , νDd = νMd , ρD = ρM ,

φD
σ =

(
φM
σ

)Δ
, νDσ = νMσ

√
Δ

√√√√√
(
1− (φM

σ )2Δ

1− (φM
σ )2

)/⎛
⎝1 +

2φM
σ

1− φM
σ

−
2ΔφM

σ

(
1− (φM

σ )1/Δ
)

(1− φM
σ )2

⎞
⎠ ,

(A.29)

with Δ = 1/22.

Next, we use the same procedure (mapping) to express the intra-daily parameters in

terms of the daily parameters, assuming Δ = 1/8 (hourly frequency). Finally, we approx-

imate the continuous volatility AR(1) dynamics with a discrete two-state Markov chain

dynamics as described in Garcia et al. (2008). This leads to the high-frequency endow-

ment dynamics (16).
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Table 1: Summary Statistics of High Frequency Returns.

This table of summary statistics shows the mean, standard deviation, skewness, kurtosis and number of observations for
daily and intra-daily annualized expected returns, rt,t+252. The upper panel provides statistics for daily, sixty-minute and
five-minute returns for the full sample and a commonly used subsample. The lower panel shows the mean and standard

deviation for the realized volatility, σ2
t−m,t, upside volatility,

(
σ+
t−m,t

)2
, downside volatility,

(
σ−
t−m,t

)2
, and the asymmetric

volatility measure, st−m,t, as squared percentages. The samples are computed on a five-year aggregation level.

Mean Std. Skewness Kurtosis N

intra daily -60 minutes
1986:02-2010:09 rt,t+252 7.854 7.974 -0.274 34.145 43090
1990:01-2007:12 rt,t+252 9.149 6.822 -0.101 13.922 31528

intra daily -5 minutes
1986:02-2010:09 rt,t+252 8.363 26.405 -0.260 64.254 484256
1990:01-2007:12 rt,t+252 9.701 22.805 0.118 61.036 355370

daily
1964:01-2010:06 rt,t+252 3.668 2.487 -0.843 23.512 11831

1986:02-2010:09 1990:01-2007:12

Risk Measures Mean Std. Mean Std.

σ2
t−m,t 469.712 199.171 457.819 190.834(
σ+
t−m,t

)2
224.753 100.457 225.734 98.827(

σ−
t−m,t

)2
244.959 101.216 232.086 92.228

st−m,t -20.207 31.680 -6.352 11.302
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Table 2: Estimates for Different Levels of Aggregation. 1986:02-2010:09

This table provides an overview of the regression results for the following one-factor asymmetric asset pricing model:

rt,t+h

h
= αmh + β2,mhst−m,t + εmt,t+h.

where st−m,t is the backward-looking realized asymmetric risk measure for an aggregation period m. The backward-looking
aggregation period of the risk measures is either five years (Aggregation Level I) or four years (Aggregation Level II). The
equity return aggregation periods, h, are one, two, three and six months. The upper panel provides estimates for sixty-minute
high-frequency data and the lower panel provides estimates for five-minute high-frequency data.

Aggregation Level I Aggregation Level II

1M 2M 3M 6M 1M 2M 3M 6M

60 minutes returns
αhm -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000

(-0.00) (-0.00) (-0.00) (-0.00) (-0.00) (0.00) (0.00) (0.00)

βhm -0.110∗ -0.159∗ -0.201∗ -0.327∗ -0.070† -0.097‡ -0.125‡ -0.212∗
(-2.99) (-3.01) (-2.97) (-3.22) (-1.83) (-1.97) (-2.08) (-2.51)

R2 1.18 2.48 4.00 10.66 0.45 0.91 1.52 4.45

5 minutes returns
αhm -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000

(-0.00) (-0.00) (0.00) (0.00) (-0.00) (-0.00) (0.00) (0.00)

βhm -0.192∗ -0.272∗ -0.332∗ -0.466∗ -0.127‡ -0.181‡ -0.219‡ -0.342∗
(-3.20) (-3.22) (-3.30) (-3.34) (-2.30) (-2.27) (-2.24) (-2.35)

R2 3.65 7.38 10.95 21.68 1.58 3.24 4.76 11.69

Reported t-statistics are Newey-West (HAC) corrected. † indicates a 10% significance level, ‡ indicates a 5% significance level
and ∗ indicates a 1% significance level.
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Table 3: Estimates for Different Levels of Aggregation. 1986:02-2010:09

This table provides an overview of the regression results for the following one-factor asymmetric asset pricing model:

rt,t+h

h
= αmh + β1,mh

(
σ+
t−m,t

)2

m
+ β2,mh

(
σ−
t−m,t

)2

m
+ εmt,t+h.

where
(
σ+
t−m,t

)2
is the potential upside gain and

(
σ−
t−m,t

)2
is the potential downside loss. The backward-looking aggregation

of the semivariances is either five years (Aggregation Level I) or four years (Aggregation Level II). The equity return aggre-
gation periods, h, are one, two, three and six months. The upper panel provides estimates for sixty-minute high-frequency
data and the lower panel for five-minute high-frequency data.

Aggregation Level I Aggregation Level II

1M 2M 3M 6M 1M 2M 3M 6M

60 minutes returns
αhm 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000

(0.00) (0.00) (0.00) (0.00) (-0.00) (-0.00) (-0.00) (-0.00)

β1,hm -0.801∗ -1.147∗ -1.449∗ -2.336∗ -0.579‡ -0.791∗ -0.983∗ -1.519∗
(-3.31) (-3.37) (-3.35) (-3.43) (-2.28) (-2.44) (-2.59) (-3.11)

β2,hm 0.738∗ 1.063∗ 1.350∗ 2.218∗ 0.510∗ 0.701∗ 0.879∗ 1.399∗
(3.34) (3.21) (3.09) (3.06) (2.36) (2.49) (2.62) (2.88)

R2 1.89 3.73 5.71 13.14 1.47 2.68 3.94 8.13

5 minutes returns
αhm 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000

(0.00) (0.00) (0.00) (0.00) (-0.00) (-0.00) (-0.00) (-0.00)

β1,hm -6.644∗ -9.388∗ -11.401∗ -15.773∗ -3.726∗ -5.234∗ -6.270∗ -9.249∗
(-3.85) (-3.78) (-3.88) (-3.96) (-3.02) (-2.95) (-2.90) (-2.88)

β2,hm 6.561∗ 9.272∗ 11.263∗ 15.603∗ 3.647∗ 5.125∗ 6.140∗ 9.096∗
(3.77) (3.69) (3.79) (3.85) (2.94) (2.86) (2.81) (2.79)

R2 4.88 9.62 14.04 25.94 3.11 6.06 8.62 17.27

Reported t-statistics are Newey-West (HAC) corrected. † indicates a 10% significance level, ‡ indicates a 5% significance level
and ∗ indicates a 1% significance level.
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Table 4: Estimates for Different Levels of Aggregation. 1990:01-2007:12

This table provides an overview of the regression results for the following one-factor asymmetric asset pricing model:

rt,t+h

h
= αmh + β2,mhst−m,t + εmt,t+h.

where st−m,t is the backward-looking realized asymmetric risk measure for aggregation period m. The backward-looking
aggregation of the risk measures is five years. The equity return aggregation periods, h, are one, two, three and six months.
The upper panel provides estimates for sixty-minute high-frequency data and the lower panel for five-minute high-frequency
data.

1M 2M 3M 6M

60 minutes returns
αhm 0.000 -0.000 -0.000 -0.000

(0.00) (-0.00) (-0.00) (-0.00)

βhm -0.173‡ -0.230‡ -0.271‡ -0.367∗
(-2.19) (-2.16) (-2.16) (-2.43)

R2 2.93 5.22 7.29 13.43

5 minutes returns
αhm 0.000 0.000 0.000 -0.000

(0.00) (0.00) (0.00) (-0.00)

βhm -0.211∗ -0.299∗ -0.354∗ -0.467∗
(-3.72) (-3.98) (-3.96) (-4.09)

R2 4.39 8.89 12.47 21.79

Reported t-statistics are Newey-West (HAC) corrected. † indicates a 10% significance level, ‡ indicates a 5% significance level
and ∗ indicates a 1% significance level.
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Table 5: Robustness Checks. 1990:01-2007:12

This table provides an overview of the regression results for the most commonly used predictors and the ARV measure. Panel
1 provides estimation results for the daily price-earnings ratio. Panel 2 gives results for the predictive regression using the
price-earnings ratio and the ARV measure. Panel 3 contains regression results for the VRP. Finally, the bottom panel provides
estimates for the two-factor predictive regression using the VRP and the ARV measure. The equity return aggregation periods,
h, are one, two, three and six months. The table shows results for a five-minute return series.

1M 2M 3M 6M

Price-Earnings-Ratio
αhm -0.000 -0.000 -0.000 -0.000

(-0.00) (-0.00) (-0.00) (-0.00)

βPE,hm -0.149∗ -0.216∗ -0.288∗ -0.373∗
(-4.48) (-3.64) (-4.21) (-4.37)

R2 2.17 4.63 8.21 13.83

Price-Earnings-Ratio & ARV
αhm -0.000 -0.000 -0.000 -0.000

(-0.00) (-0.00) (-0.00) (-0.00)

βPE,hm -0.051 -0.078† -0.135† -0.159†
(-1.30) (-1.72) (-1.86) (-1.93)

βARV,hm -0.184∗ -0.257∗ -0.280∗ -0.377∗
(-2.96) (-3.53) (-2.97) (-3.06)

R2 4.55 9.29 13.71 23.48

Variance Risk Premium
αhm 0.000 0.000 0.000 -0.000

(0.00) (0.00) (0.00) (-0.00)

βV RP,hm 0.016 0.082 0.134† 0.219∗
(0.32) (1.13) (1.80) (2.79)

R2 -0.04 0.61 1.75 4.72

Variance Risk Premium & ARV
αhm 0.000 0.000 0.000 -0.000

(0.00) (0.00) (0.00) (-0.00)

βV RP,hm -0.076 -0.037 -0.004 0.044
(-1.23) (-0.39) (-0.05) (0.49)

βARV,hm -0.240∗ -0.313∗ -0.356∗ -0.450∗
(-3.28) (-3.22) (-3.23) (-3.45)

R2 4.86 8.98 12.44 21.93

Reported t-statistics are Newey-West (HAC) corrected. † indicates a 10% significance level, ‡ indicates a 5% significance level
and ∗ indicates a 1% significance level.
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Table 6: Economic Significance

This table shows the maximum achievable Sharpe ratios for the ARV trade-off (Model I) and the two-factor semivariance
risk-reward trade-off (Model II), following Cochrane (1999), who uses a Hansen and Jagannathan (1991) theorem to derive
a relation between the maximum unconditional Sharpe ratio achievable by a predictive regression, and its R2. The relation is

Smax =

√
S2 + R2

1− R2

with S being the unconditional Sharpe ratio. The upper panel provides results for the 60 minutes return series and the lower
panel for the 5 minutes return series.

1M 2M 3M 6M

60 minutes returns
S 0.497 0.603 0.771 1.002

Model I Smax 0.627 0.824 1.058 1.599

Model II Smax 0.695 0.918 1.165 1.724

5 minutes returns
S 0.743 0.978 1.226 1.601

Model I Smax 1.013 1.410 1.779 2.568

Model II Smax 1.093 1.528 1.925 2.769
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Table 7: Bootstrapping

This table shows bootstrap results for the ARV trade-off (Model I) and the two-factor semivariance risk-reward trade-off (Model II). We bootstrap 10, 000 times with the
five-minute return series. The mean of all bootstraps, as well as the 95% confidence interval for each point estimate is provided.

1M [2.5% 97.5%] 2M [2.5% 97.5%] 3M [2.5% 97.5%] 6M [2.5% 97.5%]

Model I
αhm 0.000 [-0.000 0.000] 0.000 [-0.000 0.000] 0.000 [-0.000 0.000] 0.000 [-0.000 0.000]

(0.00) (0.00) (0.00) (0.00)

βhm -0.192∗ [-0.217 -0.167] -0.272∗ [-0.297 -0.248] -0.331∗ [-0.354 -0.309] -0.466∗ [-0.485 -0.446]
(-16.72) (-23.14) (-28.77) (-40.80)

R2 3.67 7.40 10.96 21.68

Model II
αhm -0.000 [-0.000 0.000] -0.000 [-0.000 0.000] -0.000 [-0.000 0.000] 0.000 [-0.000 0.000]

(-0.00) (-0.00) (-0.00) (0.00)

β1,hm -6.646∗ [-7.409 -5.862] -9.393∗ [-10.132 -8.634] -11.402∗ [-12.073 -10.732] -15.775∗ [-16.349 -15.191]
(-18.21) (-25.28) (-31.48) (-44.32)

β2,hm 6.562∗ [5.778 7.327] 9.278∗ [8.517 10.013] 11.263∗ [10.589 11.939] 15.605∗ [15.016 16.183]
(17.99) (24.95) (31.04) (43.70)

R2 4.92 9.66 14.07 25.96

Reported t-statistics are Newey-West (HAC) corrected. † indicates a 10% significance level, ‡ indicates a 5% significance level and ∗ indicates a 1% significance level.
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Table 8: Estimates for Different Levels of Aggregation. 1964:01-2010:09

This table provides an overview of the regression results for the one-factor asymmetric asset pricing model (Model I) and
for the two-factor upside-downside realized volatility asset pricing model (Model II) with daily equity market return data.
The backward-looking aggregation, m, of the risk measures is seven years. The equity return aggregation periods, h, are one
month, two months, three months, six months, one year, two years and three years.

Daily Data 1M 3M 6M 1Y 2Y 3Y

Realized Volatility
αhm -0.000 -0.000 0.000 -0.000 -0.000 -0.000

(-0.00) (-0.00) (0.00) (-0.00) (-0.00) (-0.00)

βhm 0.011 0.044 0.060 0.056 0.029 0.091
(0.30) (0.70) (0.72) (0.50) (0.17) (0.48)

R2 -0.42 -0.24 -0.07 -0.12 -0.37 0.36

Model I
αhm -0.000 -0.000 0.000 0.000 -0.000 -0.000

(-0.00) (-0.00) (0.00) (0.00) (-0.00) (-0.00)

βhm -0.028 -0.079† -0.114† -0.146‡ -0.210‡ -0.319∗
(-1.21) (-1.93) (-1.88) (-2.19) (-2.22) (-2.46)

R2 -0.35 0.19 0.88 1.71 3.97 9.76

Model II
αhm -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(-0.00) (-0.00) (-0.00) (-0.00) (-0.00) (-0.00)

β1,hm -0.054 -0.124 -0.180 -0.246† -0.385† -0.515‡
(-0.80) (-1.42) (-1.61) (-1.69) (-1.78) (-1.97)

β2,hm 0.065 0.167‡ 0.239‡ 0.299∗ 0.408∗ 0.598∗
(1.24) (2.14) (2.11) (2.43) (2.42) (2.55)

R2 -0.57 -0.02 0.66 1.51 4.14 9.76

Reported t-statistics are Newey-West (HAC) corrected. † indicates a 10% significance level, ‡ indicates a 5% significance level
and ∗ indicates a 1% significance level.
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Table 9: (GDA) Model Asset Pricing Implications

The entries in the top panel are the model preference parameters of the representative investor, and the excess kurtosis of the consumption volatility
process. The entries in the bottom panel are the annualized (as percentages) population mean and volatility of the log price-dividend ratio, the risk-free
return, and the equity log return in excess of the log risk-free rate. The last two rows show the slope coefficient and the R2 of the predictability of
five-year excess returns by the log price-dividend ratio.

Data GDA1 GDA2 GDA3 GDA4

Preferences

δ 0.9989 0.9989 0.9989 0.9989
γ 2.5 2.5 2.5 2.5
ψ 1.5 1.5 1.5 1.5
α 0.3 0.3 0.3 0.3
θ 0.997 0.997 0.997 0.997
κσ 100 75 50 25

Asset Pricing Implications

E [pd] 3.33 2.82 3.09 3.24 3.27
σ [pd] 0.44 0.22 0.21 0.18 0.13
AC1 [pd] 0.94 0.73 0.73 0.73 0.73
E [rf ] 0.57 0.45 0.97 1.14 1.22
σ [rf ] 3.77 9.28 8.78 7.84 5.90
E [r] 5.50 7.74 5.64 4.72 4.44
σ [r] 20.25 30.52 28.16 25.47 21.72

β (5Y ) -0.08 -0.40 -0.36 -0.35 -0.34
R2 (5Y ) 29.74 34.72 33.25 29.76 22.10
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Table 10: (KP) Model Asset Pricing Implications

The entries in the top panel are the model preference parameters of the representative investor, and the excess kurtosis of the consumption volatility
process. The entries in the bottom panel are the annualized (as percentages) population mean and volatility of the log price-dividend ratio, the risk-free
return, and the equity log return in excess of the log risk-free rate. The last two rows show the slope coefficient and the R2 of the predictability of
five-year excess returns by the log price-dividend ratio.

Data KP1 KP2 KP3 KP4

Preferences

δ 0.9989 0.9989 0.9989 0.9989
γ 15 15 15 15
ψ 1.5 1.5 1.5 1.5
α 1 1 1 1
θ 1 1 1 1
κσ 100 75 50 25

Asset Pricing Implications

E [pd] 3.33 3.33 3.50 3.77 4.15
σ [pd] 0.44 0.02 0.02 0.02 0.02
AC1 [pd] 0.94 0.73 0.73 0.73 0.73
E [rf ] 0.57 0.04 0.79 1.38 1.71
σ [rf ] 3.77 0.79 0.85 0.90 0.92
E [r] 5.50 5.33 4.03 2.70 1.67
σ [r] 20.25 16.32 16.34 16.37 16.32

β (5Y ) -0.08 -0.35 -0.34 -0.33 -0.37
R2 (5Y ) 29.74 0.61 0.74 0.87 0.68
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Figure 1: (GDA) Model-Implied Regression Slope and R2 of the Predictability of Excess Returns by the ARV.

This figure plots the model-implied population slope and R2 for the univariate predictability of excess returns by the asymmetric realized variance, as a function of the
backward-looking aggregation of the risk measures (m, in years). The risk measures are based on sixty-minute returns. The three top graphs show the slope coefficient, for
given equity return aggregation periods h of one month, three months and six months. The three bottom graphs show the corresponding predictability, R2. The representative
investor has GDA preferences.
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Figure 2: (GDA) Model-Implied Regression Slope and R2 of the Predictability of Excess Returns by the Upside and Downside
Realized Semivariances.

This figure plots the model-implied population slopes and R2 values for the bivariate predictability of excess returns by the upside and downside realized semivariances (based
on sixty-minute returns), as a function of the backward-looking aggregation of the risk measures (m, in years). The three top graphs show the coefficients of upside realized
semivariance, for given equity return aggregation periods h of one, three and six months. The three middle graphs show the coefficients of downside realized semivariance, while
the three bottom graphs show the corresponding predictability, R2. The representative investor has GDA preferences.
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Figure 3: (KP) Model-Implied Regression Slope and R2 of the Predictability of
Excess Returns by the Upside and Downside Realized Semivariances.
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This figure plots the model-implied population slopes for the bivariate predictability of excess returns by the upside semivari-
ance (top-left graph) and the downside realized semivariance (top-right graph), as well as the corresponding R2 (bottom-right
graph) as a function of the backward-looking aggregation of the risk measures (m, in years), for a given equity return aggre-
gation period h of six months. The model-implied population slope for the univariate predictability of excess returns by the
ARV is shown in the bottom-left graph. The risk measures are based on sixty-minute returns. The representative investor
has KP preferences.
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