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Abstract

Expected returns vary when investors face time-varying investment opportunities. In theory,
structural long-run risk models (Bansal and Yaron, 2004) and no-arbitrage affine models
(Duffie, Pan, and Singleton, 2000) emphasize sources of risk that are not observable to the
econometrician. We show that the term structure of risk implicit in option prices can reveal
these risk factors exante. Empirically, we find that the variance term structure reveals two
important drivers of the bond premium, the equity premium and the variance premium,
jointly. Similarly, two risk factors are sufficient to capture the predictive content of higher-
order uncertainty — skewness and kurtosis — but these do not add to the predictive content
of the variance factors. The predicted equity premium is counter-cyclical and our results are
robust to the inclusion of other known predictors of returns. Overall, our results bode well
for our ability to link risk-return trade-offs across different markets, and across horizons,
within a unified theoretical framework.
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1 Introduction

Expected returns vary when investors face time-varying investment opportunities. For
example, in Merton (1973), the premium, EP;, between equilibrium expected returns on

equity and the risk-free rate is proportional to the conditional variance, O't2,
EP, = yo?, (1)

where 7 is the coefficient of risk aversion. Unfortunately, the ex-ante conditional equity
premium and variance are not directly observable to the econometrician.! Hence, assessment
of Equation (1) and inference about the structural parameter v remains challenging. The
more recent theoretical and empirical literature emphasizes that additional risk factors?
are at play behind expected returns variations but, again, we do not observe expected
returns, and typically, we do not observe the relevant measures of risk. Hence, the analysis
and quantifications of risk-return trade-offs remain a central question for researchers and

practitioners in finance.

This article contributes to the literature in proposing an alternative approach to measure
risk factors priced in the option market. We build on the fact that option prices can be
used to provide model-free, forward-looking measures of risks. Specifically, we show that
the term structure of variance implicit in option prices can be used to reveal risk factors.
Empirically, we find that (i) the variance term structure reveals two risk factors, (ii) the same
two factors exhibit significant predictability for the bond, equity and variance premia, and
the predictive content is robust to the inclusion of other known predictors, (iii) the predictive
content is strong at short horizons, less than one year, where other popular predictors are
relatively less effective and, finally, (iv) the variance risk factors imply counter-cyclical risk
premium variations. Improved economic conditions, measured from labor market, capacity
utilization or inventory indicators, are associated with counter-cyclical variations in the risk
factors which in turn lead to counter-cyclical predicted returns. But, similar to the excess
volatility puzzle (Shiller, 1983), less than one-third of the variance risk factor variations can

be explained by macroeconomic indicators.

Our main contribution, beyond the predictability results, is to identify risk premium
variations that are common across different markets (see (ii) above). In his presidential

address to the American Finance Association, John Cochrane refers to a “multivariate

!This may explain why the empirical support for the theoretical prediction in Equation (1) is remarkably
uneven. French, Schwert, and Stambaugh (1987), Campbell and Hentschel (1992), and Ghysels, Santa-Clara,
and Valkanov (2004) find a positive relation between volatility and expected returns. Turner, Startz, and
Nelson (1989), Glosten, Jagannathan, and Runkle (1993) and Nelson (1991) find a negative relation. Guo
and Savickas (2006) find a positive relation between index volatility and individual stock returns. Ludvigson
and Ng (2005) find a strong positive contemporaneous relation between the conditional mean and conditional
volatility and a strong negative lag-volatility-in-mean effect.

*For instance, volatility risk and jump risk (Bollerslev, Tauchen, and Zhou, 2009; Drechsler and Yaron,
2011).



challenge” to returns predictability (Cochrane, 2011). Specifically, he notes the abundance
of empirical results linking one potential risk factor at a time to one type of return at a time.
He puts particular emphasis on the fact that there is a strong common element underlying
these relationships, and asks “what is the factor structure of time-varying expected returns?”
We provide one (partial) response to Cochrane’s challenge in that we use the span of option
prices to study the factor structure of time-varying expected returns. We find that two
factors summarize the compensation for risk implicit in the term structure of option-implied
variance and, in addition, the same risk factors are associated with common predictability of
the equity, variance and bond risk premia. In other words, the compensation for risks across
different financial markets exhibits significant commonalities. Our results also echo results
in Cochrane and Piazzesi (2005, 2008) who show that a single combination of forward rates
summarizes their predictive content for the risk premium of bonds with different maturities
and, moreover, that this fact implies tight restrictions on the price of risk. The cross-
market commonalities that we uncover imply similar restrictions and, together with our
other results, bode well for the ability of future research to link risk-return trade-offs across

different markets, and across horizons, within a parsimonious theoretical framework.
1.1 THE VARIANCE TERM STRUCTURE SPANS RISK FACTORS

Affine no-arbitrage models (Duffie, Pan, and Singleton, 2000) imply that the bond, equity
and variance premia at different investment horizons are linear functions of the same risk
factors.® In other words, risk premia should exhibit a factor structure. But, as in Merton’s
model noted above, the risk factors are unobservable to the econometrician.* Nonetheless,
theory also predicts that the risk factors form a basis for the term structure of variance.
In other words, a small number of linear combinations from the variance term structure,
which can be measured from option prices, should span time variations of expected returns.
Note that analog results hold in the class of affine (or approximately affine) long-run risk
economies (Eraker, 2008; Bansal and Yaron, 2004).

1.2 THE VARIANCE TERM STRUCTURE PREDICTS THE BOND AND
EQUITY PREMIUM

FEmpirically, we proceed in four steps. First, we measure variance using options on S&P
500 futures across a range of maturities based on the standard model-free measure from
Bakshi and Madan (2000) and we show that the variance term structure exhibits a low-

dimensional factor structure. Its first three principal components explain close to 97% of

3The variance premium is the difference between the expected variance under the historical measure and
the risk-neutral measure, Q, which is given by EZ[o?,,] — Ef[0Z.1]. This is analogous to the definition of
the equity premium, Ef [ry11] — EQ [res1].

4No-arbitrage jump-diffusion models rely on unobservable factors that drive variations in the stochastic
drift, volatility and jump intensity of the underlying processes. Similarly, the defining structure of affine
long-run risk equilibrium models combines recursive preference with small but persistent stochastic factors
in the distribution of consumption growth. The latter are difficult to measure by construction.



the total variation. Each component has a systematic effect across maturities and can be
interpreted as level, slope and curvature factors, respectively. Second, we estimate how
many factors from the variance term structure are sufficient to summarize its predictive
content for bond and equity returns, jointly. We use the robust procedure of Cook and
Setodji (2003). This dimension-reduction procedure does not focus a priori on the leading
principal components.® The test does not rely on any distributional assumption. It is also
robust to departures from linearity. We find that two factors are sufficient to summarize the

joint predictability of the bond and equity premia across maturities and across horizons.

In a third step, we estimate these factors via multivariate reduced-rank regressions
(RRR) of returns on the variance term structure, where the rank of the coefficient matrix
corresponds to the number of linear combinations that are sufficient to summarize the
information content.® A model with a rank of two — where only two linear combinations
from the variance term structure can predict returns — yields R?s ranging from 5% to 7%
for bond returns. The same variance factors predict equity returns with R?s that range
from 3% to 6% at horizons between 1 and 12 months. The predictability is stronger at
intermediate horizons and peaks for 3-month returns. Overall, the results confirm the
information content of the variance term structure. Moreover, the reduced-rank restriction
is supported in the data: allowing for more than two risk factors yields little statistical or

economic gain.

We provide several robustness checks. The variance term structure factors exhibit sub-
stantial correlation with a battery of other known predictors of equity returns. Notwith-
standing this substantial overlap, none of these alternative predictors dent the significant
predictability of the variance risk factor. We also document a web of correlations with a rich
set of 124 economic and financial variables. This provides further reassurance that these
factors capture actual economic risk. In particular, the correlations between the risk fac-
tors and economic indicators imply counter-cyclical variations in risk premia. Moreover, we
show that the variance risk factors are correlated with the level, slope and curvature of the
variance term structure, but that they mix information from other principal components.

Cochrane and Piazzesi (2005) obtain a similar result in the bond markets.

In the fourth and final step, we show formally that the variance term structure is also
linked to the variance premium. The extant literature sees the variance premium as an
important predictor of the equity premium (e.g., Bollerslev, Tauchen, and Zhou 2009). But
we do not observe the variance premium directly and one must obtain volatility forecasts

under the historical measure to construct a variance premium proxy.” We note that both

5Cochrane and Piazzesi (2005) provide an example in the context of bond returns where a small principal
component of forward rates, which is typically ignored to explain the variations in forward rates themselves,
plays an important role in predicting bond excess returns.

SEstimation and inference in RRR models is available in closed form. See Anderson (1951) and, more
recently, Hansen (2008) as well as Reinsel and Velu (1998), for a textbook treatment.

"Estimation of the variance premium, EZ[07, 1] — Ei[07,1], often relies on option prices to obtain a model-



the variance term structure and the variance premium reflect a compensation for risk, at
least in part, and that one should be informative about the other. We formally test the
link between the variance premium and the variance term structure and ask whether the
same two variance factors estimated to predict the bond and equity premia only can also

8 on variance factors

predict the excess variance. Results from excess variance regressions
yield R2s reaching up to 10% at the 6-month horizon with an inverted U-shape. Each
variance factor plays an important role, but at different horizons. Adding the variance
premium proxy from Bollerslev, Tauchen, and Zhou (2009) to the predictive regression
yields little predictability improvement — its information content appears to be subsumed

in the variance term structure.

1.3 THE FACTOR STRUCTURE EXTENDS TO SKEWNESS AND KUR-
TOSIS

Theory predicts that expected returns should also be linked with variations in higher-order
risks, such as asymmetry and tail thickness (Rubinstein 1973; Kraus and Litzenberger 1976).
We show that affine no-arbitrage models imply that all the cumulants of multi-horizon re-
turns, including the variance, are affine functions of the same risk factors.” Nonetheless, the
variance term structure may fail to reveal these higher-order risk factors.!® For instance,
information from measures of higher-order risks implicit in option prices can add to the in-
formation from option-implied variance if part of their variations is weakly correlated with
variance (relative to the measurement errors in option-implied variance, say). Therefore, we
can use the term structure of higher-order risks to discern additional risk factors. Empiri-
cally, we construct model-free measures of asymmetry and tail thickness based on cumulants
(labeled as skewness and kurtosis hereafter). We find that two factors are still sufficient to
summarize the predictive content of the variance, skewness and kurtosis term structures for
the bond, equity and variance premia and, in addition, that combining information from

higher-order risk measures does not add to the predictability of returns.

As in section 1.2, we proceed in four steps. First, we document the factor structure and

estimate the number of factors. Second, we estimate RRR models linking the skewness or

free estimate of the first term but requires specification of a time-series model for the historical dynamics
of o, for the second term. The extant literature does not discuss whether this approach delivers a precise
estimate of the variance premium.

8 The excess variance, V{41, is defined relative to the variance premium in a way that is analogous to
the definition of excess returns, xr¢, 1, relative to the equity premium. We have that zrf,; = ri41 — E;@ [res1]
and zvf,, = E?[crﬂﬂ — 07

9The use of the cumulant-generating function to characterize the effect of higher-order cumulants on
properties of asset prices is also suggested by Martin (2010). Recall that the first cumulant corresponds to
the mean, the second cumulant corresponds to the variance, the third cumulant corresponds to the third
central moment and provides a measure of skewness, while the fourth cumulant corresponds to the fourth
central moments minus 3 times the squared variance and provides a measure of the tails. The cumulant
term structure has been neglected in the literature.

10This is yet another similarity with the term structure of interest rates. In principle, yields can reveal
all state variables related to the future behavior of the short rate. However, specific cases arise where some
factors have a small or no impact on interest rates and remain hidden. See Duffee (2011).



kurtosis term structure, respectively, to the bond and equity returns. We conclude that two
factors remain sufficient in every case. Finally, we use the same factors and confirm that
the predictability extends to the variance premium. Again, the results are robust to the
inclusion of alternative predictors and the factors exhibit the same linkages with other macro
and financial indicators. Strikingly, combining factors from the term structures of variance,
skewness and kurtosis, together, does not provide significant predictability improvements.
Instead, two factors are again sufficient to summarize their joint information content. This
suggests that the joint distribution of the equity premium, the bond premium and the

variance premium could be captured by a model with a small number of factors.
1.4 LITERATURE

Christoffersen, Jacobs, and Chang (2011) review the vast literature that uses option-implied
information in forecasting, including for returns predictability.!! Our approach is most
closely related to Bakshi, Panayotov, and Skoulakis (2011). They study the predictive
content of the l-month and 2-month forward variances for S&P 500 and Treasury bill
returns.!> We use a broader range of maturities, as well as higher-order moments, and
consider the joint variations of expected returns across markets. Motivated by theory, we

uncover the factor structure of option-implied variance and higher-order risk measures.

Leippold, Wu, and Egloff (2007), Amengual (2009), and Carr and Wu (2011) find that
two factors are needed to describe the variance premium dynamics. We link these factors
to the term structure of risk implicit in option prices. Bollerslev, Tauchen, and Zhou (2009)
and Drechsler and Yaron (2011) ask whether the variance premium can predict the equity
premium. Similarly, Zhou (2011) and Mueller, Vedolin, and Zhou (2011) ask whether the
variance premium predicts bond returns. Instead, we ask whether the same factors that
drive the equity and the bond premium can predict the ex-post excess variance since, like the
equity premium, the ex-ante variance premium is not observable. Constantinides and Ghosh
(2011) also invert risk factors from a set of financial asset prices: they use the risk-free rate
and the price-dividend ratio to reveal risk factors in the context of the long-run risk model
of Bansal and Yaron (2004). Our empirical implementation is robust to misspecification of

the underlying model.

The rest of the article is organized as follows. Section 2 considers affine no-arbitrage
models and derives the multi-horizon cumulant-generating function of excess returns and
excess variance. We then show how the term structure of uncertainty can be used to reveal
fundamental risk factors. Section 3 introduces the data and measurement of risk from option

prices. Section 4 evaluates the information content from the term structure of risk-neutral

11n particular, Ang, Hodrick, Xing, and Zhang (2006) shows that option-implied market volatility is priced
in the cross-section of equity returns. Chang, Christoffersen, and Jacobs (2011) show that option-implied
market skewness is priced in the cross-section of equity returns.

12Gtrictly speaking, they focus on the information content of payoffs contingent on the exponential of
future integrated variance.



variance. Section 5 repeats the exercise by extending the information set to include the

term structures of skewness and kurtosis. Section 6 concludes.

2 Revealing Risk Factors using the Variance Term Structure

This section motivates the empirical analysis performed in the article. The analysis is
mostly based on existing results, but it focuses on the distribution of multi-period excess
returns. In particular, we derive expressions for the multi-horizon expected bond and equity
risk premium. We also derive the multi-horizon variance premium and expressions for the
conditional variance of returns across investment horizons: the term structure of variance.
Finally, we show how to use the observed variance term structure to recover the factors

driving the risk premium and the variance premium.

2.1 RISK PREMIUM, VARIANCE PREMIUM AND THE VARIANCE TERM
STRUCTURE

The one-period (log) excess returns derived from holding some asset are!3

P
t

11 = log — Tt

where P, is the price of that asset at time ¢ and 7, is the (log) one-period risk-free rate.

The excess returns over any horizon 7 are given by

-
TTep+r = Z LTi4j-
j=1
Consider an economy with K state variables, X, and with the following three properties:
(i) The joint distribution of zry11 and X141 belongs to the family of affine jump-diffusion
continuous-time (or discretized) models (Duffie, Pan, and Singleton, 2000).
(i) The risk-free rate, ¢, is an affine function of X;.
(iii) The stochastic discount factor is an exponential-affine function of X;; and xri41

(Gourieroux and Monfort, 2007; Christoffersen, Elkamhi, Feunou, and Jacobs, 2010).

The appendix formalizes these properties and shows that this class of models nests a wide

array of discrete-time asset-pricing models. Indeed, the affine long-run risk models with

131n section 4, we will consider the excess returns from the broad S&P 500 equity index, zrf,,, and the
excess returns on a Treasury bond, xri’H.



Epstein-Zin-Weil preferences (Bansal and Yaron, 2004; Eraker, 2008) also fit this descrip-
tion.'* In this broad class of models, the equity premium and the bond premium over an

investment horizon 7, EP(t,7) and BP(t, ), respectively, are given by

EP(t,7) = E} (21 ,]
= Bep,O(T) + Bep(T)TXta (2)

and

BP(t,7) = E} |:337“?’t+7_:|

= Byo(T) + Bo(7) T X, (3)

where the coefficients Bep0(7), Bep(T), Bb,0(7), Bp(7) are a function of the underlying model’s
parameters. In particular, the coefficients f¢,(7) and ,(7) characterize the returns that
are required by investors to bear the risk associated with variations in the risk factor: the
risk-return trade-off. The exposure of zriy1 to a given element of X, i1 is zero whenever

the corresponding element of 3(7) is zero.

We also use the following definitions,

o = Var G

-
2 2
Otttr = E Otyj

j=1

where o? is simply the 1-period excess returns variance and atgyt o parallels the definition of

the integrated variance in continuous-time models. The appendix shows that the variance

premium over any investment horizon 7, VRP (t,7), is affine:

VRP (th) = Eff@ [U?,tJrT] - EF [0-152,t+7']
= 5vp,0(7') + 5vp(T)TXt7 (4)

where the coefficients, Byp0(7) and B,,(7), depend on the structure of the model and are

given in the appendix.'® Finally, the conditional variance of excess returns under Q over a

14See sections A.1 and A.2 of the appendix. This nests the broad family of asset-pricing models with
affine valuation or the Laplace transform introduced by Duffie, Pan, and Singleton (2000) in continuous
time and by Darolles, Gourieroux, and Jasiak (2006) in discrete time. See, for example, Piazzesi (2009) for
term-structure models, or Christoffersen, Jacobs, Ornthanalai, and Wang (2008) and the references therein
for option-pricing models. Chamberlain (1988) provides an alternative argument based on a martingale
representation. We thank Nour Meddahi for pointing this out.

511 the context of long-run risk models (Bansal and Yaron, 2004), Be,(7) is not zero whenever X1, affects
the conditional distribution of future consumption growth. Moreover, B, (7) is not zero if the consumption
volatility is time-varying (Bollerslev, Tauchen, and Zhou, 2009) or if consumption growth is not conditionally
Gaussian and can jump (Bakshi and Madan, 2006; Drechsler and Yaron, 2011).



horizon 7 is also affine and given by
Var;@(T) = VC”’P [xrf,t+‘r] = Bur,0 (T) + Bur (T)TXt- (5)

This implies that measures of variance at different maturities display a factor structure with
dimension K. This is similar to interest rate models where yields at different maturities
sum the contributions of the real rate, inflation and compensation for risk. In most models,
these are determined by a small set of economic variables (e.g., wealth, technology, habits)
that are often not observed directly, at least at the desired frequency. But the unobservable
economic variables can be revealed via their effects on yields. This important insight is

applicable in our context.
2.2 REVEALING RISK FACTORS

Equations (2) and (3) characterize the risk-return trade-offs in a broad class of affine mod-
els. Different models emphasize different risk factors, X;, and imply different patterns of
risk loadings, Bep, By and Byp, but the risk premium dynamics is linear in each case. The
coefficients of that relationship could be estimated directly via ordinary least squares (OLS)
if the risk factors, X;, were observable. This would provide a test to discriminate across
different specifications, or serve as guidance to investors. However, the risk factors pro-
posed in the literature are latent or difficult to measure. For example, filtering the factors
underlying the volatility dynamics (Christoffersen, Jacobs, Ornthanalai, and Wang, 2008)
or the intensity of stochastic jumps (Bates, 2006) poses important econometric challenges

and depends on a correct specification of the model.'6

In contrast, model-free measures of risk-neutral variance are available directly from
option prices, and the variance term structure can reveal the risk factors. However, the
measured risk-neutral variance differs from the true value, Var®(r) = 17?1/7“;@(7) + v (1),
where we assume that the measurement error, 14(7), is uncorrelated with %’t (r). In
other words, in contrast with the computation of bond yields from bond prices, measure-
ment errors cannot be neglected when computing variance from option prices. Stacking

measurements across horizons 7 = 7y, ..., 74, and using Equation (5), we have that
—Q
Vart + v = BO,vr + By Xy,

where the g x 1 vector, By, stacks the constant 3,0 (7), and the ¢ x K matrix B,, stacks

the corresponding coefficients 3,, (7). Note that we typically have more observations along

16This issue also arises in equilibrium models. For example, the expected consumption growth (Bansal
and Yaron, 2004), the volatility of consumption volatility (Bollerslev, Tauchen, and Zhou, 2009) or the
time-varying jump intensity (Drechsler and Yaron, 2011; Eraker, 2008) all escape direct measurement.



the term structure than there are underlying factors (i.e., ¢ > K). We can then write,
_ _ —Q =
Xt == _BW’BO,UT + Bvrvart + Bert7 (6)

where the K x ¢ matrix B,, = (B, B,,) ' B, is the left-inverse of B,,.!” Equation (6) shows

that we can use the variance term structure as a signal for the underlying risk factors.

Stacking Equations (3) and (2) and across horizons, we have that

——Q

BP, = Ty + My,Var, + v (7)
—Q

EP, = o+, Var, +v,7, (8)

respectively, where the components of ? and v are v/? (1) = By (7) T Byrvy and v (1) =
ﬁep(T)TBmJ/t respectively. In practice, we do not observe the bond premium or the equity

premium, but we can only measure ex-post excess returns,

xrte,t—i-r = Ep(t7 T) + 6;t-i-'r

b _ b
Ty s = BP(t,T) + €111 r,

which, using Equations (7) and (8), can be rewritten as

—Q

:Urf+ = Iy + 1 Var, + (l/fp + €?+) 9)
—Q

argy = epo+HepVar, + (1" +€fy), (10)

where the zry; (€:4) notation signals that we have stacked ex-post excess returns (their
innovations) at different horizons. Equations (9) and (10) form the basis of our empirical
investigation in section 4. Each line of the coefficient vector I, and of the coefficient

matrix I, is given by

]:[ep70(7—) = B8P70(7-) - Bep(T)TBUTBO,vr
ep(7) = Bep() " Bor, (11)

respectively, with similar expressions for 11, g and 1I,, showing that the rank of II., and
[Ty, is at most K, the number of columns of B,,, irrespective of the number of horizons
7 used at estimation. This reduced rank coefficient plays a crucial role in the empirical

analysis in section 4.

"The left-inverse exists since we consider cases with q > K and B,, has full (column) rank. If the latter
condition is not satisfied, then the loadings of the conditional variance, Va*r? on the risk factors X are not
linearly independent. This implies that less than K linear combinations of the risk factors can be revealed
from the variance term structure. In this case, we redefine the risk vector in Equation (6) such that it only
contains those linear combinations that are spanned.



2.3 ESTIMATING THE NUMBER OF VARIANCE TERM STRUCTURE
FACTORS

We first ask how many linear combinations from the variance term structure summarize its
information content for the bond and equity premia. In other words, we want to estimate
the rank of the coefficient matrix, I, in a multivariate regression with the following general
form:

Trip = 11y + H%? + €44, (12)

where x4 is a vector of excess returns, %;@ is a ¢ x 1 vector of risk-neutral variances. This
stacks Equations (9) and (10). The statistical literature on sufficient dimension reduction
provides a useful approach to estimating this rank. We follow Cook and Setodji (2003) who
introduce a model-free test of the null hypothesis that the rank is r (i.e., Hg : rank II = r)
against the alternative that the rank is strictly greater than r. The modified Cook and Se-
todji, test statistic, A,, is available in closed form and has a x? asymptotic distribution with
known degrees of freedom. In particular, this test does not require Gaussian innovations in
Equation (12). The test is also robust against departure from linearity, section A.5 of the

appendix describes the test formally.
2.4 REDUCED-RANK MULTIVARIATE REGRESSIONS

As stated above, Equations (9) and (10) form the basis of our empirical investigation and,
for a given rank, r, they correspond to multivariate RRR for which estimators and the
associated inference theory are available since at least Anderson (1951). In particular, for a

given estimate of the rank, r, the p x ¢ matrix, I, can be rewritten as a product, Il = AT,

where A and I' have dimensions (p x 7) and (r x q), respectively, and where r < min(p, q).'®
Then, we can rewrite Equation (12) as
——Q
xryy = o+ Al'Var, + ey, (13)

and the RRR estimators of A, I and Il are given from the solution to

T
arg Arrlli% trace (Z €t+6;_> , (14)

»L L0 =1

with closed-form expressions given in section A.6 of the appendix. Note that the estimated

factors, F%;Q, can be very different than the leading principal components of @“?.19

18See Reinsel and Velu (1998) for a textbook treatment of RRR and a discussion of existing applications
in tests of asset-pricing models (e.g., Bekker, Dobbelstein, and Wansbeek, 1996; Zhou, 1995). Anderson
(1999) provides a theory of inference under general (e.g., not Gaussian) conditions. Hansen (2008) provides
a recent formulation of the estimator. The OLS regression emerges when r = min(p; q) or, trivially, when
r = 0 and the regressors are irrelevant.

19Gee, for example, the discussion by Cook in his Fisher Lecture (Cook, 2007) and, in particular, this
quote from Cox (1968) “there is no logical reason why the dependent variable should not be closely tied to

10



Finally, A and I' are not separately identified, and we choose that rotation which yields
orthogonal factors. This is analogous to the standard identification choice in principal

component analysis (PCA).
2.5 WHY REDUCED-RANK REGRESSIONS?

Our methodological approach imposes the factor structure predicted by theory but remains
agnostic regarding other structural assumptions. This approach is in line with Cochrane
(2011), who emphasizes the need to uncover the factor structure behind time-varying ex-
pected returns. It is also closely related to Cochrane and Piazzesi (2008), who show that a
single factor from forward rates is sufficient to summarize the predictability of bonds with
different maturities. In this spirit, we test the joint hypotheses of linearity and reduced-
rank structure without any other joint hypotheses about the number and the dynamics of
state variables, the conditional distribution of shocks, or the preference of the representa-
tive agent. Otherwise, the test will overreject the null hypotheses of a given low number of
factors, even if it holds in the data, when these maintained hypotheses are not supported
by the data. Similarly, estimation based on the Kalman filter will be severely biased if
the maintained structural or distributional assumptions are not supported in the data. In
contrast, our approach does need additional hypotheses but, instead, exploits the funda-

mentally multivariate nature of the problem.?°

3 Data

3.1 EXCESS RETURNS

We use the Center for Research in Security Prices (CRSP) data set to compute end-of-
the-month equity returns on the S&P 500 at horizons of 1, 2, 3, 6, 9 and 12 months.
Longer-horizon returns are obtained from summing monthly returns. We use the Fama-
Bliss zero-coupon bond prices from CRSP to compute bond excess returns. Excess equity

returns are computed using risk-free rates from CRSP.%!
3.2 EXCESS VARIANCE

As in the case of returns, longer-horizon realized variances are obtained from summing

monthly realized variances.?? We follow Britten-Jones and Neuberger (2000) to compute

the least important principal component [of the predictors].” Cochrane and Piazzesi (2005) provide a case in
point in the context of bond returns predictability. Their returns-forecasting factor is a linear combination
of forward rates that is only weakly spanned by the leading principal components of forward rates.

20In particular, our testing and estimation procedure could not be applied to each line of Equation (12)
separately.

21The Fama-Bliss T-bill file covers maturities from 1 to 6 months. We use the l-year rate from the
Fama-Bliss zero-coupon files. The 9-month T-bill rate is interpolated when necessary.

22We thank Hao Zhou for making end-of-the-month S&P 500 realized variance data available on his web
site.
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expected integrated variance under the risk-neutral measure (see Equation (4)) from option
prices. The excess variance is the difference between the realized variance under the histori-
cal measure and the exante measure of conditional variance under the risk-neutral measure.
This definition is completely analogous to the definition of excess returns. Explicitly, the

excess variance is given by

e — Q2 2
TV = By [Ut,t+r] ~ Ottt (15)
where the first term is measured exante from option prices and 0,527 ¢+ is the realized variance

between t and ¢ + 7.
3.3 RISK-NEUTRAL VARIANCE

We use the OptionMetrics database of European options written on the S&P 500 index. We
first construct a weekly sample of closing bid and ask prices observed each Wednesday. This
mitigates the impact of intraweekly patterns but includes 328,626 observations. Consistent
with the extant literature, we restrict our sample to out-of-the-money call and put options.
We also exclude observations with no bid prices (i.e., price is too low), options with less
than 10 days to maturity, options with implied volatility above 70% and options with zero
transaction volume. Moreover, we exclude observations that violate lower and upper bounds
on call and put prices. The OptionMetrics database supplies LIBOR and eurodollar rates.
To match an interest rate with each option maturity, we interpolate under the assumption of
constant forward rates between available interest rate maturities. We also assume that the
current dividend yield on the index is constant through the options’ remaining maturities.?
Finally, we restrict our attention to a monthly sample (see section A.7 of the appendix).
This yields 85,385 observations covering the period from January 1996 to October 2008.
Table I contains the number of option contracts across maturity and moneyness groups.

The sample provides a broad coverage of the moneyness spectrum at each maturity.
3.4 SUMMARY STATISTICS

We then rely on the non-parametric approach of Bakshi and Madan (2000) to measure
the conditional variance implicit in option prices at maturities of 1, 2, 3, 6, 9, 12 and 18
months. These correspond to the maturity categories available for trading (see section A.8
of the appendix).?* Table II provides summary statistics of variance across maturities. Risk-
neutral variance is persistent with autocorrelation coefficients between 0.73 and 0.87 across

maturities. The average term structure has an inverted U-shape. However, the volatility of

23See OptionMetrics documentation on the computation of the index dividend yield.

24We originally included the 24-month maturity category. However, its summary statistics contrast with
the broad patterns drawn in other categories. For this maturity, risk-neutral variance is more skewed to the
right, has fatter tails and is less persistent. Moreover, it is less correlated with other maturities. We consider
these results a reflection of higher measurement errors and exclude this category in the following.
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risk-neutral variance peaks at two months and then gradually declines with maturity. The

risk-neutral variance is also more symmetric and has smoother tails for longer horizons.
3.5 PRINCIPAL COMPONENTS

Variance measures are highly correlated across maturities (not reported). For example, the
correlation between 1-month- and 2-month-ahead risk-neutral variances (i.e., Var@ (¢, 1)
and Var® (¢,2)) is 0.88, while the correlation between 1-month- and 1-year-ahead variances
is 0.69. This suggests that a few systematic factors can explain most of the variation across
maturities. Panel B of Table II reports the results from a PCA, which is a simple way to
summarize this factor structure. The first three principal components explain 88%, 6% and
3% of the term structure of the risk-neutral variance, respectively, and together explain
97.4% of the total variation.

These components reflect systematic variation across the variance term structure. The
first component’s loadings range from 0.31 to 0.44, with an inverted U-shape across matu-
rities. In other words, most of the variation in the risk-neutral variance can be summarized
by a change in the level and curvature of its term structure. Next, the second component
is similar to the negative of a slope factor. Its loadings decrease, from 0.49 to -0.57, and
pivot around zero near the 6-month maturity. The third component’s loadings draw a cur-
vature pattern. The correlation between the first component and a measure of the level,
Ly = %Q(t, 6), is 0.98, the correlation between the second component and a measure of
the slope, S; = %Q(t, 18) — %Q(t, 1), is -0.90, and the correlation between the third
component and a measure of the curvature, Cy = 2%/7"(@(75, 6) — %Q(t, 18) — %Q(t, 1), is
0.80.

4 Results — Variance Term Structure

Section 2 shows that a broad family of no-arbitrage models contains at its core the impli-
cation that a few linear combinations from the term structure of variance can be used to
predict returns. Consistent with theory, section 3 shows that the term structure of variance
can be summarized by its leading principal components. This section estimates the rank
of the matrix IT in Equation (12), which summarizes the risk-return trade-offs between re-
turns and the risk factors contained in the variance term structure. We then estimate the
corresponding reduced-rank predictability regression. We find that two risk factors from
the variance term structure summarize its information content for the equity premium, the
bond premium and the variance premium, jointly. We also compare their predictive con-
tent with that of other predictors commonly found in the literature. Finally, we interpret
the risk factors via their relationship with a broad range of financial and economic indica-
tors. Together, these results provide reassurance that the estimated factors proxy for actual

economic risks.
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4.1 RANK ESTIMATES

Formally, we consider different versions of a joint model for the bond and equity premium,
——Q
ITi4 = HO + AT Vart + Et+, (16)

where we stack Equations (9) and (10). Line-by-line estimation of A and I' is not feasible
when AT does not have full rank. Panel A of Table III reports the p-values associated with
the Cook-Setodji statistics, A,, for different ranks ranging from 0 to 6. The tests reject that
rankII = 0 and rank IT = 1. But we do not reject that rank IT = 2.

Estimation of unrestricted univariate return regressions on seven variance measures uses
98 parameters. Instead, the results suggest that two risk factors are sufficient to summarize
the predictive content of the variance term structure. Estimation of the multivariate system
with only two linear combinations of variance is parsimonious, since it reduces the number of
parameters to 42. Standard OLS inference, based on F-statistics, rejects the null hypothesis
that the variance term structure is irrelevant (unreported), but misses the factor structure
in expected returns. Estimation of the rank in expected returns also leads to a rejection that
r = 0, but concludes that two factors are sufficient. In other words, the increased predictive
power of unrestricted regressions (i.e., going from r = 2 to r = 7) can be attributed to

sampling variability.

The estimated risk factors can be related to the principal components of variance. The
first factor is highly correlated with the second principal component (-0.93) as well as
with the fourth principal component (0.27). Hence, its variations correspond to changes in
the slope of the variance term structure but also combine information from higher-order
components. The second risk factor is correlated with the first component (0.24) but also
mix information from several higher-order components. Its effect on the variance term
structure is hard to interpret but mixes variations in the level and the curvature of the

variance term structure.2’

4.2 EXCESS RETURNS PREDICTABILITY

Panel B of Table III reports the R%s of predictability regressions of bond excess returns
across different rank hypotheses. In particular, the R?s in the case where the rank is r = 2
are 7.3%, 6.6%, 5.9% and 5.5% for annual returns on bonds with 2, 3, 4 and 5 years to
maturity, respectively.?6 Compare this with the case r = 7 (which corresponds to the
standard OLS predictive regressions), where the R?s are 11.5%, 10.1%, 8.8% and 7.9%,
respectively. Similarly, Panel C reports R%s for equity return predictability. For r = 2,

25The correlation with the level, L; = %Q(tﬁ), is 0.35 and the correlation with the curvature, C; =
War (t,6) — Var-(t,18) — Var-(t,1), is 0.42.

26Mueller, Vedolin, and Zhou (2011) uses the variance premium and obtains R?s ranging from 1% to 2%
but the sample dates do not coincide.
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the R2%s are 3.1% and 6.3% for 1-month and 2-month excess returns. The R2Zs then decline
smoothly to 3.6% at the 12-month horizon. In all cases, there is little gain from increasing

the rank from r = 2 to r = 7, given the large increase in the number of parameters.?”

Next, we assess the predictive content of the variance risk factors for equity returns in
relation with other known predictors in the literature.?® We find that none of the alternative
predictors captures the significant equity return predictability exhibited by the variance
term structure in Panel C of Table ITI. To check this, we repeat the predictability regressions
but where we combine both variance risk factors with one of the alternate predictors, in
turn. We test the null hypothesis that variance risk factors can be excluded in a regression
that includes one alternative predictor. Panel A of Table IV reports the p-value for the null
that variance risk factors are jointly uninformative based on the F-statistics. The statistical
evidence is overwhelming at other maturities, especially at intermediate maturities where
the variance risk factor remains significant even at the 1% level. However, the variance risk

factors are marginally significant (at the 10% level) for 1-month returns.

To gauge the economic significance, we project each variance risk factor on a given
alternative predictor in a first stage, to obtain the orthogonalized risk factors (i.e., the
residuals). Then, in a second stage, we use these orthogonal components in equity return
predictability regressions. This projection measures what part of the predictability can be
attributed to the variance risk factors, but weighting the evidence in favor of the alternative
predictors. We focus on the R? statistics, since the individual factors are identified only
up to a rotation. Panel B of Table IV reports the results. The rightmost column provides
the corresponding R?s with the original factors (i.e., from Panel C of Table III). The
conclusion is clear: the predictive content of the variance risk factor is broadly unchanged

and the overlap with that of the alternative predictors is small.

Interestingly, orthogonalizing the variance factors with respect to the default returns
spread produces higher R?.?9 This implies that some sources of risk that attract compen-
sation in the bond or equity markets are not revealed by the variance term structure. In
other words, some linear combinations of the risk factors are unspanned by the variance
term structure. A similar issue arises in the interest rate literature and has been discussed

in Duffee (2011).

The links with common predictors are not negligible. The first two lines of Table IV)

2"We do not report estimates of A and I, since the orthonormal rotation used for estimation has no special
economic meaning.

28We consider a set of equity valuation indicators: the S&P 500 index dividend-price ratio, d/p, the index
dividend yield, d/y, and the index earning-price ratio, e/p; the following variance measures: the risk-neutral
variance from index options, rnsvar, the index realized variance, svar, the variance premium, vrp; the
following yields and bond spread indicators: the 3-month Treasury bill yield, ¢bl, the 10-year Treasury bond
yields, ltr, the term spread, tms, the default spread, dfy, the default returns spread, dfr, and the inflation
rate, infl.

29This arises because the correlation between the default returns spread and the variance risk factors has
a sign opposite that of the correlation between the default returns spread and excess returns.
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Panel C report the R?s from univariate regressions of the alternative return predictors on
each variance risk factor and the last line reports the sum of these R2s which corresponds
to a regression of each alternative predictor on both risk factors, jointly.?® This measures
the common variations between each predictor and the variance factors. The risk-neutral
variance and the variance risk premium exhibit substantial correlations with the variance
risk factors (total R?s of 12% and 15%, respectively). This is not surprising, since the
information content of these predictors comes from the option market as well. Predictors
obtained from fixed-income markets also correlate with the variance risk factors. Regressions
of the T-bill rate, the 10-year bond rate and the term spread result in R?s of 12%, 13% and
5%, respectively. Finally, regressions of the dividend-price ratio and of the dividend yield,

measured from the equity market, result in R?s of 12% and 11%, respectively.
4.3 EXCESS VARIANCE PREDICTABILITY

Bollerslev, Tauchen, and Zhou (2009) argue that the compensation for risk implicit in the
one-month ahead variance premium VRP(t,1) is driven by a factor that also drives the
equity premium and that the variance premium predicts equity excess returns. But the
variance premium is not observable (see Footnote 7). In contrast, Equation (4) shows that
the same risk factors underlying the observable variance term structure also determine the
variance premium. Therefore, the risk factors extracted from the variance term structure
should also forecast the excess variance (in addition to the equity premium). We can test

this prediction formally via regressions of excess variance on the term structure factors,
e _ o Q vp | _Up
wvg, = Hypo + Iy Var, + (1" +€4), (17)

where, as above, xvf, signals that we have stacked excess variance for different horizons,
where v7(7) = Byp(7) " Byrin, and where €% (1) = avf, . — VRP(t,7), respectively. The

definitions of II,,, o and II,, are analogous to those given in Equation (11) for excess returns.

We first estimate a benchmark excess variance predictability regression based on the
BT Z, proxy,
wvp (7) = ao(7) + ap (1) BT Zy + €14.(7), (18)

for different horizons 7 and where BT Z; is the proxy used by Bollerslev, Tauchen, and
Zhou (2009). They use realized volatility from the previous period, o7, as an estimate of
E} (07,1)-3' The results, reported in Panel A of Table V, show that BT Z; has no predictive
power for the 1-month excess variance, even though the BT Z; was designed to proxy for the

1-month variance premium. Nonetheless, BT Z, predicts excess variance at longer horizons

39These bivariate R2s correspond to the sum of the individual RZs, since the risk factors are orthogonal
by construction.

31This approach is consistent with a random-walk assumption for the dynamics of 0't2+1. The realized
volatility from last period is then combined with option-implied measure of E,@ (Ut2+1) from the current
period.
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with R?s up to 7% at the 6-month horizons.

Panel B of Table V reports OLS estimates of the following regressions:
. ——0
xvy (1) = ypo(T) + Awpl’ Var, +ei1(7). (19)

where we use the estimated factors, f‘%/r;@, for r = 2 Together, these two risk factors that
were estimated to predict the bond and equity premia also predict the variance premium.
The adjusted R?s is 4.9% for the 1-month variance premium. The R?s then range between
7% and 9% at horizons between 1 and 9 months, respectively, which is more than the
predictability obtained using BT'Z;. A look at individual coefficients reveals that each
of the estimated linear combinations plays an important role but at different horizons.??
Panel C of Table V combines the term structure factors, fﬂ/r?, with the BT'Z; factor.
The results show that combining predictors yields little predictability improvement. The
information content from the BT Z; factor appears to be subsumed in the variance term

structure via the second variance risk factor (its correlation with BT Z; is -0.38).

Our finding that the variance term structure can be used to predict the variance pre-
mium is a novel and significant result. Note that the key insight from Bollerslev, Tauchen,
and Zhou (2009) still holds: the variance premium is linked to the equity premium since
the risk factors also predict the equity risk premium. In addition, the ability to forecast
excess variance is akin to an out-of-sample check since the excess variance was not used to
extract risk factors from the term structure. Of course, one potential concern is that both
the predictor and the excess variance use information from risk-neutral variance. On the
other hand, the BT Z; proxy, and the first principal component of the variance term struc-
ture (unreported results), also use information from the risk-neutral variance, but do not
predict the 1-month variance premium. Finally, it may be tempting to use Equation (17)
along with bond and equity returns in a RRR. However, the measurement errors in excess

variance that arise because we measure E;@ [th +T} from option prices are correlated with
)

. 7—Q L . . .
the measurement errors in Var, , which is also obtained from option prices.??

4.4 COUNTER-CYCLICAL RISK FACTORS

Following Ludvigson and Ng (2009), we survey the correlations between the risk factors and
124 economic and financial indicators.>* Figure 1 shows a bar graph where each bar adds

the R2%s from the univariate regressions of each factor, in turn, on one of the economic or

32Constant terms are not reported for parsimony.

33This correlation would distort the rank tests upward. Stambaugh (1988) provides an example where
measurement errors due to bid-ask spreads in bond prices lead to overrejection of small factor structure
and wrongly favor larger factor structure (his section 4.4, p. 58). Cochrane and Piazzesi (2005) provide
a similar example. They use a single factor from forward rates to study bond returns. They show that
the single-factor restriction is rejected statistically, but that deviations from a single-factor structure are
economically insignificant.

34These variables are classified in the following broad categories: real output and income, employment and
income, real consumption, real inventories and orders, housing starts, foreign exchange, price index, stock
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financial variables. The question we ask is to what extent are these risk factors spanned
by each of these indicators. We focus on R?, since regression coefficients depend on the

identification assumptions (i.e., orthonormal factors).

The results show the overlap between the risk factors recovered from options and stan-
dard macroeconomic indicators. In particular, both factors are linked to macro variables.
The first factor is correlated with inventory indicators — the National Association of Pur-
chasing Management (NAPM) inventory quantity index, NAPM inventory prices index,
NAPM employment index— and with the saving rate. The second risk factor exhibits strong
commonalities with labor market indicators — the ratio of help-wanted ads to the number
of unemployed, and the number of unemployed by duration categories — as well as with the
capacity utilization rate. The R?s hover around 10% for variables related to hours worked,
15% for payroll variables and as high as 20% for the help-wanted index. The coefficient
estimates (not reported) imply that the relationship between the estimated expected equity
returns and the macro indicator is counter-cyclical. Improved economic conditions — lower
unemployment or a higher help-wanted index — lead to lower expected returns. Finally,
Boivin, Giannoni, and Stevanovic (2010) construct 10 factors that summarize the evolution
of these 124 variables. Together, these 10 factors explain up to 24% and 29% of the risk
factor variations. Corradi, Distaso, and Mele (2012) also report that macro variables do

not span the volatility and the risk premium implicit in the VIX index.

The results also confirm the overlap between the variance risk factors and common
financial variables, such as S&P 500 stock index variables, long-term yields and, importantly,
Moody’s corporate bond indices. No data from Moody’s were used to estimate the factor.
Moreover, the chain of correlations between each financial indicator and the variance risk
factors, first, and between the risk factors and expected returns, second, implies that the
predicted effects on changes in the financial indicators on expected returns have the expected
signs. For instance, combining the estimate’s sign from the univariate regressions on each
financial indicator, and the sign of the loadings in the estimate of the loading matrix A
above (not reported), implies that expected returns predicted by the variance risk premium
rise with a lower valuation on the stock market, higher long-term interest rates and higher

corporate bond yields.

5 Term Structure of Higher-Order Cumulants

We show that measures of higher-order risks can also be used to reveal risk factors. Empir-
ically, we find that the skewness and kurtosis term structures predict the bond premium,
the equity premium and the variance premium. Their predictive content is similar to that

of the variance term structure and can be summarized by two risk factors. Consistent with

price, money and credit aggregates, interest rates, and bonds. See Table VIII for a detailed description. We
thank Dalibor Stevanovic for sharing this data.
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theory, combining measures of variance, skewness and kurtosis improves predictability only
marginally and, strikingly, the predictive content of this broad information set can still be

summarized by two factors.
5.1 HIGHER-ORDER CUMULANTS IN EQUILIBRIUM

The variance term structure may fail to reveal all risk factors. This may arise if some
factors do not affect the variance, or if their effects are small relative to the measurement
errors in the variance or to the innovations in returns. It may be possible to increase the
efficiency of our estimates and parse the variance term structure to find additional factors.
But this neglects low-hanging fruit. An alternative way is to broaden the information set
to include other measurements where the effect of other risk factors may be more easily
measured. Section A.3 of the appendix shows that every cumulant of returns is affine in

the state vector,
M5, (1) = Bao (1) + X/ Bax (1),

for any returns horizon 7, and where coefficients depend on the underlying model.?® Then,
an argument similar to that of section 2.2 shows that higher-order cumulants can also be
used to reveal Xj:

X, = —B,Bo, + an\?;@ + Buvn. (20)

Following a path parallel to the previous section, we construct model-free measures of
returns cumulants of order 3 and 4 (see section A.8 of the appendix). We also slightly
misapply the terminology for ease of exposition and label these cumulants skewness and

kurtosis, respectively.
5.2 SUMMARY STATISTICS AND FACTOR STRUCTURE

Panels A and B of Table VI provide summary statistics of the conditional skewness and
kurtosis of returns, respectively. The average distribution of returns implicit in the index
option is left-skewed and has fat tails. The average skewness lies below zero and slopes
downward with the horizon. On the other hand, the average tail is fatter at longer horizons.

Skewness and kurtosis are persistent, especially at intermediate horizons.

The correlation matrices (Panels C and D of Table VI) suggest a low-dimensional factor
structure, as in the case of risk-neutral variance. Panels E and F report PCA results for the
term structures of skewness and kurtosis, respectively. The first three principal components
of skewness explain 67%, 15% and 12% of the total variation, respectively, and together
explain 93%. Similarly, the first three principal components of kurtosis explain 65%, 19%

35Gee section A.3 of the appendix. Recall that the first cumulant corresponds to the mean, the second
cumulant corresponds to the variance, the third cumulant corresponds to the third central moment and
provides a measure of skewness, while the fourth cumulant corresponds to the fourth central moments minus
3 times the squared variance and provides a measure of the tails. The conventional measures of skewness
and kurtosis are not affine in the risk factors.
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and 12% of the total variation, respectively. As for the variance, the loadings reveal that
the leading components of skewness and kurtosis have a systematic effect on their respective

term structures.
5.3 PREDICTABILITY RESULTS

We estimate different variations of the following multivariate regression:
TTe4 :H0—|—AF Ft+5t+, (21)

where, as above, xr;, stacks four excess bond returns and six excess equity returns. We
consider different combinations of the variance, skewness and kurtosis term structures to

construct the regressors, Fy.
5.3.1 FEzxcess Returns with Skewness or Kurtosis

We first consider each term structure separately. Panel A of Table VII reports the
results. First, model V'(2) uses the term structure of variance as predictors (i.e., F; = 17(;";@)
This reproduces a subset of the results reported above (Table III) and provides a point of

comparison for models using skewness or kurtosis as predictors. Second, model S(2) includes

only the term structure of skewness (i.e., F; = Skewi@). Third, model K(2) includes only
the term structure of kurtosis (i.e., F; = Wt?) In model S(2), the p-value is 6.1% for
the null that » = 1 and 38.2% for the null that » = 2. Similarly, for the K(2) model, the
p-value is 7.9% for the null that r = 1 and 32.2% for the null that r = 2. Hence, the test
based on each of these higher moments comes close to rejecting the rank-one restriction in
favor of a higher rank, while the rank-two restriction is clearly not rejected. Nonetheless,
we report estimation results based on r = 2 for comparison, because more general models
combining information from different term structures consistently reject the case r = 1 (see
section 5.3.2). The results show that the ability to predict bond and equity excess returns,
as measured by the RZ?s, is strikingly similar whether we use any one of the variance,
skewness or kurtosis term structures. This is consistent with theory. If anything, skewness
and kurtosis appear to be slightly more informative about bond returns, while variance
appears to be slightly more informative about equity returns. We stress that this does not
imply that only the variance matters. The term structure of risk-neutral variance combines
information about historical variance, skewness and kurtosis (Bakshi and Madan, 2006),

and changes in the prices of risk.
5.8.2  Combining Variance, Skewness and Kurtosis Term Structure

The VSK(2,2) model combines the two risk factors estimated separately from each of
the variance, skewness and kurtosis term structures. Hence, this uses six predictors and
asks whether these risk factors add up to more than two factors when combined in the

same model. The evidence is unambiguous. The p-value is 1.1% for the null that r = 1
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and 32.6% for the null that » = 2. Again, this is consistent with theory. The predictive
content available from the term structure of different risk measures is broadly overlapping.
As expected, estimation in the case r = 2 yields R%s that are very close to the highest value
obtained above. Of course, we could (at least) reach these values by setting r = 6. What
is unexpected is that we can summarize these six risk factors into two with little loss of

predictive ability.

The VSK(2,2) model is a second-stage estimation that uses factors obtained in a first-
stage procedure. Next, we introduce model VSK(7,2), which combines the entire variance,
skewness and kurtosis term structures in a single RRR step. This is an alternative way to
ask whether the risk factors measured from different term structures add up to more than
two factors. Model VSK(7,2) is estimated in one step but, on the other hand, it is more
exposed to overfitting given the large number of regressors. Nonetheless, these models yield
consistent evidence. The p-value is 1.4% for the null that » = 1 and 9.7% for the null that
r = 2. The p-value has decreased substantially, but Cook and Setodji (2003) report that
this test tends to overreject when the number of predictors and regressors is particularly
high, as in model VSK(7,2). This biases our result toward concluding in favor of a greater
number of factors. Nonetheless, there is a substantial increase in predictability in the case
of r = 2 when we combine all the risk measures. R?s now range from 17% to 22% in the
case of bond returns (compared to the 9%-10% of more parsimonious models) and from 6%
to 18% in the case of equity returns (compare to the 3%-8%). The next section uses the

variance premium as an out-of-sample check.
5.3.8 Robustness and Fxcess Variance Predictability

As in section 4, we check that the risk factors extracted from the variance, skewness
and kurtosis term structures survive the inclusion of alternative risk factors (unreported
results). We also check that the in-sample predictability obtained from bond and stock
returns extends to the variance premium. Panel B of Table VII reports results of excess
variance predictability regressions. The results are broadly consistent across all models:
the R?s have an inverted U-shape across horizons, reaching a maximum close to 10% at
intermediate horizons between 3 and 6 months. This holds whether the risk factors were
extracted from the variance, skewness or kurtosis term structures. Again, the theoretical
prediction is supported in the data. In particular, there is no improvement in excess variance
predictability for the VSK(7,2) model. Hence, this out-of-sample exercise suggests that some
of the increased excess returns predictability obtained above for the VSK(7,2) model is due
to in-sample overfitting. Finally, as in section 4.4, we survey the correlations between the
risk factors and 124 economic and financial indicators. Similarly to Figure 1, Figure 2 shows
a bar graph where each bar adds the R2s from the univariate regressions of each factor,
in turn, on one of the economic or financial variables. Conclusions drawn in section 4.4
remain as both figures display very similar patterns. Economic and financial variables

exhibit similar relationships with risk factors extracted from the variance, the skewness and

21



the kurtosis term structures, respectively. This add to the evidence in the previous section
suggesting that the the variance, skewness and kurtosis term structure share a similar

information content.

6 Conclusion

Affine no-arbitrage models of the stock returns process introduce latent variations in stochas-
tic volatility or jump intensity. But, almost by construction, these factors are difficult to
measure and the risk-return trade-offs are difficult to measure. On the other hand, model-
free measures of risk-neutral variance, and higher-order moments, are available from option
prices. We find that the term structure of risks can be used to reveal risk factors that
are important drivers of bond premium, equity premium and variance premium variations.
Consistent with theory, we find that a small number of factors, two, summarize the relation-
ship between the equity premium, the bond premium and the variance implicit in option

prices.

Our results open several avenues for future research. First, does the predictive content
from the term structure of option prices extend to other markets? In particular, is the
valuation of individual firms’ corporate bonds and equities related to the same risk factors?
Similarly, are the risk premia implicit in other derivatives markets (e.g., interest rate or FX
derivatives markets) related to the risk factors from index options? Second, how can we
reconcile the factor structure common to the variance, skewness and kurtosis term structures
with its predictive content for returns within a reduced-form asset-pricing specification?
Finally, given an appropriate reduced-form specification that matches the stylized facts
uncovered here, what equilibrium model can relate these facts to preferences and economic

fundamentals?

22



A Appendix

A.1 Affine Reduced-Form Models

Discrete-time affine specifications of the return process have the following general Laplace transform of excess returns,
Darolles, Gourieroux, and Jasiak (2006):

EE) [exp (u Ty + vTXH_l)] = exp (FTI.P:X (u, U)T X+ FEO (u,v)) , (22)

and the risk-free interest rate is defined as
7.+ = Bo + Bx X (23)

Similarly, under the risk-neutral measure, Q, affine models have the following general representation:
E2 lexp (v zry, | + vTXtH)] = exp (F;QX (u, ’U)T X + FSO (u, v)) , (24)
where

Fl (u,0) = FY x(u+7,04T) = FE ¢ (+,T)
F3 (u,0) = FEg(u+7y,v+T) = FLo(y,T).

The parameters v and I' characterize the conditional stochastic discount factor, M; 41,
Mt,t+1 = exXp (’}/ (E?"teJrl + FT Xt+1 + et) 5 (25)
and M; ;41 must satisfy

Ey[My141] = exp(=7y.4) (26)
Ep [My 411 exp(ary, )] = exp(=ry),

which together imply that

0= —F' x(v,T) Xy — Fro(v,T) — gy (27)
0=Fx1+7D) Xe+ Fg(1+~,T) = Fix (v, 1) T Xy — Froy(7,T).

It follows easily that the multi-horizon return 25:1 zrg;; denoted by zr, ;. has the following cumulant-generating function
under the risk-neutral world:
E2 lexp (u 27§,y ,)] = exp (Fgo (w;T) + XtTFgX (u; T))

where the sequence of functions Fgo (u;7) and FSX (u; ) satisfies the following recursions:
FSO (u;7) = Fgo (u;7—1)+ Fgo (u, FSX (u;T — 1))
FSX (u;7) = FSX (u, FS)X (u;T — 1)) ,
with initial conditions F, (u; 1) = Fi% (u,0) and F2y (u; 1) = F 2y (u,0).
A.2 Affine General-Equilibrium Models

In section A.1, we reported all the steps that led to the main ingredients needed in this article: equity premium, bond
premium, equity variance premium and all the risk-neutral cumulants are affine in the factor. The assumptions made to
derive these results are the following:

e The physical conditional moment-generating function of (a:rf 1 XtT_H) , is exponential affine in X, as postulated in
Equation (22)
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e The conditional stochastic discount factor, My 41, is exponential affine in both zrg, ; and X;;,, as postulated in
Equation (25)

o And, finally, the risk-free () rate is affine in X;, as postulated in Equation (23).

In this section, we consider the general class of affine equilibrium models, and show that it satisfies all three assumptions.
We consider an affine general equilibrium model (AGEM) similar to Eraker (2008). Suppose that the state of the economy

. T . .
can be summarized by a Markov process Y1 = (Acyq1, X, 1) , where Acyyq is the consumption growth process and X1
is a vector of K (observed and unobserved) state variables independent of consumption growth. The moment-generating
function of this state vector under the physical measure is given by

E, [exp (uAct_H + UTXt_H)] = exp (FO (u,v) + X' Fx (u, v)) ,

where the scalar function Fy (u,v) and the vector function Fx (u,v) describe the exogenous dynamics of the vector process
Zi+1. Assume, further, that the representative agent has recursive preferences of the Epstein-Zin-Weil type. Consequently,
the logarithm of the intertemporal marginal rate of substitution is given by

0
Sti41 =01Ind — EACtH — (1= 6) i1,

where r;y1 is the return to the aggregate consumption claim. Using the standard Campbell-Shiller approximation, ryy; =
Ko + K1wiy1 — wy + Acgq1, the log price-consumption ratio wy can be well-approximated by an affine function of the vector
state variable X; as

Wy = AO + A)T(Xt,

where the scalar coefficient Ag, and the vector coefficient Ax depend on model and preference parameters. Solving for these
coefficients is standard in the literature. The (log) stochastic discount factor can then be rewritten as
Stt+1 = Olnd — (]. — 0) (KZO + (Iil — ].) AO — A;Xt)
— ’)/ACH_1 — (]. — 9) IilA;r(XH_l, (29)

and the model-implied log risk-free rate is given by
_ T
’I"f’t = BO + BXXt7
where the scalar coefficient By and the vector coefficient Bx depend on the exogenous dynamics and preference parameters,

By =—0Ind+ (1—0) (ko + (k1 — 1) Ag) — Fo (=7, — (1 — 0) k1 Ax) (30)
By = —(1-6) Ax — Fy (—y.— (1 6) 5y Ax), (31)

hence the risk-free rate is affine in the factor X;, which shows that the general equilibrium satisfies the third requirement
enumerated earlier.

It follows that, in this economy, the change-of-measure from the historical probability to the risk-neutral probability is
given by
My 41 = exp (St,441 +75,¢) = exp (HO + H;Xt —vAci41 — p;—(XHl) ) (32)

where
Ho=—Fy(=v,-px), Hx =—Fx(—7,-px) and px = (1-0)r1Ax. (33)

Moreover, this implies that the bond premium and the equity premium are linear in the state variables whenever 6 # 1 and
Ax # 0. These conditions imply that px # 0 and that the pricing kernel varies with X;. Intuitively, the first condition
implies that the agent has preference over the intertemporal resolution of uncertainty (i.e., v # ). The second condition
implies that X, affects the conditional distribution of future consumption growth.36

36Strictly speaking, the prices of risk associated with innovations to X1 may differ from zero, with v # 1, but with a constant
wealth-consumption ratio (and risk premium) if Uy/c; varies with X;11. This arises in the knife-edge case where ¢ = 1.
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Excess return from the claim on aggregate consumption denoted by xr{, ; is computed as

TTE =Tl — /ftQ = -Gy — G}Xt + Acey1 + /ﬁA;Xt_H, (34)
where 42 = E? [ry44] is given by
pd = ko + (k1 — 1) Ag + Go + (Gx — Ax) " X3, (35)
with coefficients,
1 1
GO = DFO (—’y, —px) ( HlAX ) and GX = DFX (—’7, —px) ( /QlAX ) . (36)

As a result, we can find the expression of Ac;y; in function of xrf, , as follows:
Aciyr = ari + Go + Gx Xy — k1 Ax Xt (37)
substituting Ac;y1 by itS value (see Equation (37) in (32)) implies that
M1 = exp(Ho+ Hy Xy — v (arfy, + Go+ Gx Xy — k1Ax Xiy1) — px Xi41)
= exp (V Triy g+ " X0 + Gt) .

Hence the stochastic discount factor is exponential affine in both zrf, ; and X;;; thus the second requirement enumer-
ated at the beginning of this section is satisfied. Finally, consider the physical conditional moment-generating function of

(337”?+1,XtT+1)T'
E, [exp (uwrfﬂ + UTXHl)] = FE [exp (u (—Go - G;;Xt + Aci1 + IilA;Xt+1) + UTXHl)]
= exp (u (—Go — G;Xt)) Et {exp (UACt+1 + (U + K:le)T Xt+1):|
= eXp(Fo(u,v—I—/ﬁAX)—GO—FXtT (Fx (u,v—l—mAX)—GX))
exp (FEX (u,v)" X, + F,]F:O (u,v)) .

Hence the physical conditional moment-generating function of (:crf _H,XtT_H)T is exponential affine in X; as postulated in
(22); therefore, our approach is well motivated within the general class of an affine general-equilibrium model.

A.3 Risk-Neutral Cumulants

Then, the nth order cumulants of excess returns denoted, M2 (¢, 7), are the derivative of the log moment-generating function
of aggregate returns with respect to u, and evaluated at u = 0,

M2 (t,7) = Bno (1) + X, Bux (1),

where
Bno (1) = D"FS)O (0;7) and Bnx (1) = D”FSX (0;7).

The operator D defines the Jacobian matrix of a real matrix function of a matrix of real variables.?” Formally, for a given
function YT defined over R™ x R™ and with values in RP? x R, which associates with the m x n matrix £ the p x ¢ matrix
T (&), we have that DY (£) is the pg x mn matrix defined by

DY (€) = M and DY (¢+) = e @) (38)

dvec (€) Ovec (§)T -

and we also define the operator D; for which the derivative is taken with respect to the ith argument of the function Y. In

37See Magnus and Neudecker (1988, p. 173).
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particular, when n = 2, we have the conditional risk-neutral variance
Var(t@(T) = Var,;Q [xrzt_,_T] = Buro (T) + 5UT(T)TXt,

where Byr.0 (T) = P20 (7) and By (T) = B2, x (7). Similarly, for n = 3 and 4 we get the equation for the risk-neutral skewness
and kurtosis.

A.4 Equity, Bond and Variance Premium

Similar to the risk-neutral dynamic, Equation (22) implies that the multi-horizon return xrf,, . has the following cumulant-
generating function under the physical world:

Ey [exp (u arf i .)] =exp (FT]P:O (u;T) + X:Ff:x (w; 7)), (39)
where the sequence of functions Ff: o (u;7) and Ff: « (u;7) satisfies the following recursions:

Ero (u;7) :FEO(U§T_1)+F30 (%FF:X (w;T—1))

FPX (u;r) = FE:X (UaFE:X (u; 7 — 1))
with initial conditions F (u; 1) = Frg (u,0) and F} y (u;1) = Fy. x (u,0).
A.4.1 Equity premium

The equity premium is, by definition,
EP(t,7) = E; [arf, ] .

Hence EP(t,7) is the derivative of the log moment-generating function of aggregate excess returns (given in Equation (39))
with respect to u, and evaluated at u = 0; thus

EP(t7T) = 661),0(7—) + Bep(T)TXta

where
Bepo(T) = DlFEO (0;7) and Bep(r) = DlFf:X (0;7) .

A.4.2 Variance premium

The Variance Premium over any investment horizon 7, VRP (¢, 7) is defined as

VRP (t,7) = B |> ot | —Ef | oty
j=1 j=1

where o7 = Vary(zr{,,). of is the order 2 derivative with respect to u of the log moment-generating function given in
Equation (22); this implies that

2 P 2 P
=0 00T x+ T 000),
hence
0? FF i
VRP(t7) = 220,007 Y [EX(Xisy) - B (Xoay)]
j=1
P Fx [ o P Q) Q P 7 iy
= 3u27 (0,0) Zl|:,ux_:ux+(¢x) (Xt_ﬂx)_(¢x) (Xt_:uX)
=

= B’U;D,O (7') + ﬂq)p(T)TXta

: o F2 aFF “Lor? —19FF
with 6 = 35 (0,0, 6% = 2 (0,0), 6§ = BUX,] = (T 6%) %52 (0,0) and iy = E*[X,] = (I - ¢%) ™" 252 (0,0).
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A.4.8 Bond premium

To compute bond premium, it will be useful to compute the term structure of interest rates in closed form. The price of
an n-period discount bond at time ¢ is

n—1
Pt(") =E2 |exp | — Z Tfidg = exp (—nBo, — nB)TQLXt,) ,
j=0

where the sequence of functions By, and By, satisfies the following recursions:

(n+1)Boyns1 =nBon+ Bo— F (0,—nBx,n)
(n+1)Bxny1  =Bx —F (0,-nBx.,),

with initial conditions By 1 = By and Bx 1 = Bx. We denote excess log returns over the one-period rate by
xr?fl = In (Pt(ﬁl_l)> —1In (Pt(")) —Tf
= nBo, — (n—1)Boyu—1 — Bo+ (nBx,n — Bx)' X — (n — 1)BY 1 Xy41.

Hence the multi-horizon return Y77, zrffj denoted by xrfjtn ', is given by

T—1 T
wrify, = 7(nBon—(n—1)Bon-1—Bo)+ (nBxn—Bx) Y Xewj— (n—1)By, 1> X

§=0 j=1

The bond premium is, by definition,

BP(t,T)

P b,n
By |:xrt,t+7':|

|
A

T

= 7 (nBom — (n —1)Bonu_1 — Bo) + (nBxm — Bx)" (;& +(05%) (X — ,ﬂ;}))

<.
Il
o

0= BT S (i (65 (X0 - i)

=1

Bopo(T) + Bop(7) " X

A.5 Cook and Setodji Test Procedure

Cook and Setodji (2003) propose the following iterated algorithm as an estimator for the rank of II:

1. Initialize the null hypothesis with H(()O) :rank IT = 7(9) = 0.
2. For the hypothesis Héi), compare the AT(i) statistics with the chosen cut-off from the X52; distribution; e.g., 5%.

3. If the probability of observing Ar(i) is lower than the cut-off, then reject the null, conclude that rankII > 7(*)  and
repeat the test under a new null hypothesis where the rank is incremented; i.e., 70+ = (0 4 1.

4. Otherwise, conclude that rankII = 7(?). That is, there is insufficient evidence against rankII = 79 yet we have
rejected rank IT < (),

The test is also robust against departure from linearity. Indeed, if E[Y;|X;] is not linear in X, in contrast with Equa-
tion (12), then inference about the rank of IT from estimates of Equation (12) may still be used to form inference about the
dimension of the central mean subspace (CMS) of Y;|X;. A subspace M of R? is a mean subspace of Y;| X} if E[Y;|X{] is a
function of M T X; where the ¢ x r matrix M is a basis for M. The CMS is the intersection of all mean subspaces, see Cook
and Setodji (2003).
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A.6 Reduced-Rank Regressions
A multivariate reduced-rank regression model can be written as
Y, =ATU"F,+9Z, +¢ t=1,...,T, (41)

where A and T have size (p x K) and (¢ x K), respectively. The RRR estimators are given from the solution to

T
jnrlr‘lll Z AR (42)
t=1
and closed-form expressions are given in Theorem 5 of Hansen (2008). In his notation, define the moment matrix,
T
My =T7"Y ViF/, (43)
t=1
and define the matrices My, M., My similarly. Also, define
Syy = Myy — MszzleZy (44)
Syp =My — Mszz_leva
and define Sy; and Sy = S;y similarly. Then, the estimator of A, I" and of ¥ are given by
0T = [01,...,01]6 (45)
A=5,;B(BTS;B)"!
U = M, M} — ABM;,M_}, (46)
where [01,...,0k] are the eigenvectors corresponding to the largest K eigenvalues of
IAStr = SpySyy Sysl =0, (47)

and ¢ is an arbitrary (K x K) matrix with full rank. This is a normalization device and it corresponds to the choice of a
particular basis for the subspace spanned by the rows of T'.

A.7 Constructing a Monthly Sample

Option settlement dates follow a regular pattern through time: contracts are available for 3 successive months, then for
the next 3 months in the March, June, September, December cycle and, finally, for the next two months in the June and
December semi-annual cycle. This leads to maturity groups with 1, 2 or 3 months remaining to settlement, and then between
3and 6,6 and 9, 9 and 12, 12 and 18 and 18 and 24 months remaining to settlement. We group option prices at the monthly
frequency using their maturity date, so that enough observations are available within each group to construct non-parametric
measures. To see why this is a natural strategy, note first that each contract settles on the third Friday of a month. Consider,
then, all observations intervening between two successive (monthly) settlement dates. Each of these observations can be
unambiguously attributed to one maturity date. Moreover, within that period, each contract will be attributed to the same
maturity group.®® While a higher number of observations reduce sampling errors in our estimates of risk-neutral moments, it
may also increase noise if there is a large within-month time-variation in the distribution of stock returns at given maturities.
To mitigate this effect, we always use the most recent observation when the same contract (i.e., same maturity and strike
price) is observed more than once.

38Take any contract, on any observation date. This contract is assigned to the 1-month maturity group if its settlement date occurs
on the following third Friday, to the 2-month group if it occurs on the next-to-following third Friday, etc. This grouping does not
change until we reach the next settlement date.
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A.8 Cumulants

We rely on the non-parametric approach of Bakshi and Madan (2000) to measure the conditional variance implicit in option
prices. Any twice-differentiable payoff, H(S(t + 7)), contingent on the future stock price, S(t + 7), can be replicated by a
portfolio of stock options. The portfolio allocations across option strikes are specific to each payoff H and given by derivatives
of the payoff function evaluated at the corresponding strike price. Following Bakshi and Madan, we take

H(S(t+7)) =(r )" = 1n ((%)) |

so that the fair value, at time ¢, of a contract paying the second moments of returns over the next 7 periods ahead,
Vi (t,7) = Bl (rf4q.,) ], is given by

Qi + S® 1 _1n > 1—1o

and can be directly computed from the relevant European call and put option prices, C'(¢, 7, K) and P(t, 7, K), with maturity
7 and strike price K. Finally, the risk-neutral variance at maturity 7 is given by

Var®(t,7) = " V2(t, ) — n8(t, 7)?,

where we follow Bakshi, Kapadia, and Madan (2003) to compute p@(t,7). Similarly, option-implied risk-neutral return
cumulants are given by

rT

MR () = 10t 7) m o7 1= V(L T) - VR T) - VR

My (t,m) = Var®(t,7) = e Vy (t,7) — p(t,7)°

MY(t,7) = V(1) — 3u(t, 7)e TVLR(L, T) + 2ul(t, 7)°

M (t,7) = TV T) = 4pC(t, m)e TV () + 610t ) TV (8, ) — 3uC (8 7)Y,

where we closely follow Bakshi, Kapadia, and Madan (2003) in the computation of 2. Recall that the first cumulant is the
mean, the second cumulant is the variance, the third cumulant is the third centered moment, and the fourth cumulant is the
fourth centered moment minus 3 times the squared variance.

29



References

Amengual, D., 2009, The term structure of variance risk premia, Princeton University.

Anderson, T.W., 1951, Estimating linear restrictions on regression coefficients for multivariate normal distribu-
tions, The Annals of Mathematical Statistics 22, 327-351.

, 1999, Asymptotic distribution of the reduced rank regression estimator under general conditions, The
Annals of Statistics 27, 1141-1154.

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang, 2006, The cross-section of volatility and expected returns, The
Journal of Finance 61.

Bakshi, G., N. Kapadia, and D. Madan, 2003, Stock return characteristics, skew laws, and the differential pricing
of individual equity options, Review of Financial Studies 16, 101-143.

Bakshi, G., and D. Madan, 2000, Spanning and derivative-security valuation, Journal of Financial Economics 58,
205-238.

, 2006, A theory of volatility spreads, Management Science 52, 1945-1956.

Bakshi, Gurdip, George Panayotov, and Georgios Skoulakis, 2011, Improving the predictability of real economic
activity and asset returns with forward variances inferred from option portfolios, Journal of Financial Economics
100, 475 — 495.

Bansal, R., and A. Yaron, 2004, Risks for the long run: A potential resolution of asset pricing puzzles, The Journal
of Finance 59, 1481-1509.

Bates, D. S., 2006, Maximum likelihood estimation of latent affine processes, Review of Financial Studies 19,
909-965.

Bekker, P., P. Dobbelstein, and T. Wansbeek, 1996, The APT model as a reduced-rank regression, Journal of
Business and Economics Statistics 14, 199-202.

Boivin, J., M.P. Giannoni, and D. Stevanovic, 2010, Dynamic effects of credit shocks in a data-rich environment,
Université de Montréal.

Bollerslev, Tim, George Tauchen, and Hao Zhou, 2009, Expected stock returns and variance risk premia, RFS 22,
4463-4492.

Britten-Jones, Mark, and Anthony Neuberger, 2000, Option prices, implied price processes, and stochastic volatil-
ity, The Journal of Finance 55, 839-866.

Campbell, J., and L. Hentschel, 1992, No news is good news: An asymmetric model of changing volatility in stock
returns, Journal of Financial Economics 31, 281-331.

Carr, Peter, and Liuren Wu, 2011, Variance risk premiums, Review of Financial Studies 22, 1311-1341.
Chamberlain, Gary, 1988, Asset pricing in multiperiod securities markets, Fconometrica 56, pp. 1283-1300.

Chang, B-Y., P. Christoffersen, and K. Jacobs, 2011, Market skewness risk and the cross-section of stock returns,
Journal of Financial Economics forthcoming.

Christoffersen, P., R. Elkamhi, B. Feunou, and K. Jacobs, 2010, Option valuation with conditional heteroskedas-
ticity and nonnormality, Review of Financial Studies 23, 2139-2183.

30



Christoffersen, P., K. Jacobs, and B.-Y. Chang, 2011, Forecasting with option-implied information, vol. 2 of
Handbook of Economic Forecasting (Elsevier).

Christoffersen, P., K. Jacobs, C. Ornthanalai, and Y. Wang, 2008, Option valuation with long-run and short-run
volatility components, Journal of Financial Economics 90, 272 — 297.

Cochrane, J.H., and M. Piazzesi, 2008, Decomposing the yield curve, Graduate School of Business, University of
Chicago.

Cochrane, John. H., 2011, Presidential address: Discount rates, The Journal of Finance 66, 1047-1108.
Cochrane, John H., and Monika Piazzesi, 2005, Bond risk premia, American Economic Review 95, 138-160.

Constantinides, G. M., and A. Ghosh, 2011, Asset pricing tests with long run risks in consumption growth, The
Review of Asset Pricing Studies 1.

Cook, R.D., 2007, Fisher lecture : Dimension reduction in regression, Statistical Science 22.

Cook, R. Dennis, and C. Messan Setodji, 2003, A model-free test for reduced rank in multivariate regression,
Journal of the American Statistical Association 98, 340-351.

Corradi, V., W. Distaso, and A. Mele, 2012, Macroeconomic determinants of stock market volatility and volatility
risk-premiums, Swiss Finance Institute Research Paper N12-18.

Darolles, S., C. Gourieroux, and J. Jasiak, 2006, Structural laplace transform and compound autoregressive models,
Journal of Time Serie Analysis 27, 477-503.

Drechsler, Itamar, and Amir Yaron, 2011, What’s vol got to do with it, Review of Financial Studies 24, 1-45.
Duffee, G., 2011, Information in (and not in) the term structure, Review of Financial Studies forthcoming.

Duffie, Darrell, Jun Pan, and Kenneth Singleton, 2000, Transform analysis and asset pricing for affine jump-
diffusions, Econometrica 68, 1343-1376.

Eraker, B., 2008, Affine general equilibrium models, Management Science 54, 2068—2080.

French, K. R., G. W. Schwert, and R. F. Stambaugh, 1987, Expected stock returns and volatility, Journal of
Financial Economics 19, 3-30.

Ghysels, E., P. Santa-Clara, and R. Valkanov, 2004, There is a risk-return trade-off after all, Journal of Financial
FEconomics 76, 509-548.

Glosten, L. R., R. Jagannathan, and D. E. Runkle, 1993, On the relation between the expected value and the
volatility of the nominal excess return on stocks, Journal of Finance 48, 1779-1801.

Gourieroux, C., and A. Monfort, 2007, Econometric specification of stochastic discount factor models, Journal of
FEconometrics 136, 509 — 530.

Guo, H., and R. Savickas, 2006, Idiosyncratic volatility, stock market volatility, and expected stock returns, Journal
of Business and Economic Statistics 24, 43-56.

Hansen, P.R., 2008, Reduced-rank regression: A useful determinant identity, Journal of Statistical Planning and
Inference 138 Special Issue in Honor of Theodore Wilbur Anderson, Jr.

31



Kraus, Alan, and Robert H. Litzenberger, 1976, Skewness preference and the valuation of risky assets, The Journal
of Finance 31, 1085-1100.

Leippold, M., L. Wu, and D. Egloff, 2007, Variance risk dynamics, variance risk premia, and optimal variance
swap investments, .

Ludvigson, S. C., and S. Ng, 2005, The empirical risk-return relation: A factor analysis approach, Journal of
Financial Economics 83, 171-222.

Ludvigson, Sydney C., and Serena Ng, 2009, Macro factors in bond risk premia, Review of Financial Studies 22,
5027-5067.

Magnus, J., and H. Neudecker, 1988, Matriz Differential Calculus with Applications in Statistics and Econometrics
(Chichester, U.K: Wiley Series in Probability and Statistics).

Martin, 1., 2010, Consumption-based asset pricing with higher cumulants, NBER 16153.
Merton, R. C., 1973, An intertemporal capital asset pricing model, Econometrica 41, 867-887.

Mueller, P., A. Vedolin, and H. Zhou, 2011, Short-run bond risk premia, Discussion paper, London School of
Economics.

Nelson, D. B., 1991, Conditional heteroskedasticity in asset returns: A new approach, Fconometrica 59, 347-370.
Piazzesi, M., 2009, Affine term structure modelschap. 12 . in Handbook of Financial Econometrics (Elsevier).

Reinsel, G.C., and R.P. Velu, 1998, Multivariate Reduced-Rank Regression . vol. 136 of Lectures Notes in Statistics
(Springer).

Rubinstein, Mark E., 1973, The fundamental theorem of parameter-preference security valuation, The Journal of
Financial and Quantitative Analysis 8, 61-69.

Shiller, Robert J., 1983, Do stock prices move too much to be justified by subsequent changes in dividends? reply,
The American Economic Review 73, 236-237.

Stambaugh, Robert F., 1988, The information in forward rates: Implications for models of the term structure,
Journal of Financial Economics 21, 41 — 70.

Turner, C. M., R. Startz, and C. R. Nelson, 1989, A Markov model of heteroskedasticity, risk and learning in the
stock market, Journal of Financial Economics 25, 3-22.

Zhou, G., 1995, Small sample rank tests with applications to asset pricing, Journal of Empirical Finance 2, 71-93.

Zhou, H., 2011, Variance risk premia, asset predictability puzzles and macroeconomic uncertainty, Working Paper.

32



Table I: Option Sample Summary Statistics

Number of observations (out-of-the-money puts and calls) in each maturity (months) and moneyness (K/S) group. S&P 500 futures

option data are from January 1996 to October 2008.

Moneyness

Maturity < 0.90 0.90 — 0.95 0.95 - 0.975 0.975 -1 1-1.025 1.025 — 1.05 > 1.05
1 3173 3498 2229 2435 2429 2178 2638
2 4849 3350 2115 2423 2435 2098 3938
3 3077 1789 1151 1423 1371 1029 2649
6 4248 1694 987 1056 917 789 2957
9 2679 1020 635 645 484 405 2049
12 1621 598 368 417 375 264 1507
18 1504 500 279 313 267 169 1107
24 890 259 176 235 149 103 703

Table II: Risk-Neutral Variance Summary Statistics

Summary statistics of conditional risk-neutral variance across maturities from 1 to 18 months (Panel A) and loadings from principal
component analysis of risk-neutral variance (Panel B). Risk-neutral variance measures at each maturity constructed using the model-free
method of Bakshi and Madan (2000). Option data are from January 1996 to October 2008.

Panel A - Summary Statistics

1 2 3 6 9 12 18
Mean 0.037 0.045 0.046 0.049 0.047 0.044 0.044
Std. Dev. 0.024 0.027 0.027 0.026 0.022 0.021 0.022
Skewness 1.484 1.193 1.047 0.888 0.549 0.847 0.478
Kurtosis 5.332 4.066 3.725 3.579 2.497 3.559 2.932
p(1) 0.738 0.730 0.788 0.820 0.871 0.812 0.809

Panel B - Principal Components

1 2 3 4 5 6 7
0.36 0.49 -0.75 -0.23 0.10 -0.05 -0.03
0.44 0.38 0.33 0.16 -0.41 -0.06 0.60
0.43 0.20 0.28 0.12 -0.07 0.52 -0.63
Loadings 0.42 -0.06 0.26 0.02 0.32 -0.76 -0.27
0.35 -0.28 -0.01 0.15 0.70 0.37 0.40
0.31 -0.42 0.08 -0.81 -0.23 0.09 0.06
0.31 -0.57 -0.41 0.48 -0.42 -0.07 -0.06
R? 0.88 0.06 0.03 0.02 0.01 0.00 0.00
Cum. R? 0.88 0.94 0.97 0.99 0.99 1.00 1.00
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Table III: Excess Return and the Variance Term Structure

Rank test p-values and RZ2s in multivariate regressions, Y; = Iy + IIF; + €;, where each component of Y; is an excess bond or equity

~ Q . . . .
returns, xr¢¢4-, and where Fy = {Var (t, T)}q—:l,“_’q is a ¢ x 1 vector of risk-neutral variance measures. We consider annual excess

returns for bonds with maturities of 2, 3, 4 and 5 years, and S&P 500 excess returns at horizons 1, 3, 6, 9 and 12 months. Panel A

shows p-values associated with the Cook and Setodji modified statistics, A, in a test of the null hypothesis that the rank of the matrix

II is r. Panel B shows the R? associated with each of the individual bond return predictability regressions obtained via multivariate

reduced-rank regression (RRR) estimation, but for different hypotheses on the rank of the matrix II. Panel C shows the R? associated

with each of the individual equity return predictability regressions. Risk-neutral variance measures at each maturity are constructed
using the model-free method of Bakshi and Madan (2000). Monthly returns and option data are from January 1996 to October 2008.

Panel A - Rank Test p-values

Hy: r=0 Hy: r=1 rr=2 Hy: r=3 Hy: r=4 Hoy: r=5 Hoy: r=6
p-val 0.0 4.3 22.9 64.8 82.5 81.4 73.0
Panel B - Bond Returns R’s
r=1 r=2 r=3 r=4 r=>5 r==~6 r="17
2 7.3 7.3 9.2 11.1 11.4 114 11.5
3 6.6 6.6 7.8 9.6 9.9 10.0 10.1
4 5.7 5.9 6.6 8.2 8.7 8.7 8.8
5 5.0 5.5 5.8 7.3 7.8 7.9 8.0
Panel C - Equity Returns R?s
r=1 r=2 r=23 r=4 r=>5 r==6 r=17
1 1.9 3.1 3.1 3.3 3.4 3.5 3.7
2 4.0 6.3 7.2 8.8 9.2 9.2 9.2
3 5.4 6.3 7.5 10.7 11.1 11.1 11.3
6 3.3 5.3 7.6 9.0 9.0 9.1 9.6
9 3.5 4.2 7.9 10.1 10.1 10.1 10.3
12 3.5 3.6 10.5 11.0 11.0 11.0 11.1
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Table V: Excess Variance Predictability

Results from multi-horizon predictability regressions of the excess variance over a horizon of 7, xvi ¢4+-, with 7 = 1,2,3,6,9 and 12
months, respectively. The predictors include a constant and I'F}, the risk factors obtained from the multivariate reduced-rank regression
of bond and equity excess returns on the variance term structure (see Table III, o= Af), and BTZ;, the variance premium proxy
from Bollerslev, Tauchen, and Zhou (2009). Newey-West t-statistics with lags corresponding to the investment horizon plus 3 months
in parentheses and R? reported in percentage. Risk-neutral variance measures at each maturity are constructed using the model-free
method of Bakshi and Madan (2000). Monthly variance and option data are from January 1996 to October 2008.

Panel A - BT Z,;

1 2 3 6 9 12
BTZ, 2.28 4.84 5.24 6.32 4.59 3.39
(0.75) (2.87) (2.10) (4.28) (2.92) (1.70)

R? -0.1 2.7 35 7.0 45 2.2

Panel B - I'F,

1 2 3 6 9 12
D Vary 0.011 0.012 0.010 0.009 0.003 0.003
(2.15) (1.94) (1.55) (1.35) (0.49) (0.42)
DoVary -0.005 -0.007 -0.008 -0.008 -0.009 0.005
(-1.23) (-1.78) (-1.74) (-2.21) (-2.51) (1.56)

R? 49 8.3 78 8.9 75 1.4

Panel C - f‘Ft and BT Z,

1 2 3 6 9 12
BT Z, 0.52 3.01 3.32 4.62 2.67 5.09
(0.20) (1.49) (1.55) (3.59) (2.18) (2.50)
DVars 0.011 0.012 0.010 0.008 0.002 0.002
(2.22) (1.91) (1.49) (1.25) (0.51) (0.28)
DoVary -0.004 -0.005 -0.008 -0.005 -0.008 0.008
) (-1.34) (-1.29) (-1.74) (-1.48) (-1.99) (2.56)
R? 43 8.8 8.6 11.8 8.3 6.3
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