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Abstract

We examine the portfolio choice of an investor with generalized disappointment-aversion

preferences who faces log returns described by a normal-exponential model. We derive

a three-fund separation strategy: the investor allocates wealth to a risk-free asset, a

standard mean-variance efficient fund, and an additional fund reflecting return asym-

metries. The optimal portfolio is characterized by the investor’s endogenous effective

risk aversion and implicit asymmetry aversion. In empirical applications, we find that

disappointment aversion is associated with much larger asymmetry aversion than are

standard preferences. Our model explains patterns in popular portfolio advice across

both risk appetites and investment horizons. (JEL G11)
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Return distributions are asymmetric and display fatter tails than does the normal distribu-

tion. Correlations between asset returns conditional on downside and upside moves display

asymmetric patterns.1 There is also evidence that investors have asymmetric attitudes to-

ward risk across downward and upward movements. In particular, they place larger weights

on losses than on gains when assessing their portfolio risk. We study the joint impact of

asymmetries in asset returns and in risk attitudes on investor portfolio choice.

We propose a simple and parsimonious theoretical setup in a static setting, explicitly

ruling out any effect that might otherwise arise from dynamic channels. We model asym-

metric investor preferences using the generalized disappointment aversion of Gul (1991) and

Routledge and Zin (2010), a preference framework in which investors place different weights

on downside losses and upside gains. These preferences are consistent with the experimental

behavior observed in the Allais (1979) paradox and are supported by further experimental

evidence from Choi et al. (2007) and Gill and Prowse (2012). Moreover, this utility specifi-

cation is axiomatic, firmly grounded in formal decision theory under uncertainty, and power

utility arises as a special case in which the degree of disappointment aversion is zero.

To capture return asymmetries, we propose a setup in which log returns on assets are

generated by a normal-exponential model. The model assumes that idiosyncratic asset risks

follow a multivariate normal distribution, while skewness is generated by a single common

factor with an exponential distribution, which assets load differently on. We demonstrate

that the model can match key statistical features of the data, such as skewness, coskewness,

fat tails, and asymmetric correlations. A special case is one in which log returns are jointly

normal, and we refer to this as the case with no return asymmetry.

We derive an analytical solution to the portfolio choice problem which leads to a three-

fund separation strategy. The first fund is a risk-free asset, and the second is a standard

1Correlations between stocks tend to be greater for downside moves than for upside moves (see, e.g.,
Ang and Chen 2002; Hong, Tu, and Zhou 2007), and long-term bonds tend to be negatively correlated with
stocks conditional on down markets and positively correlated with stocks conditional on up markets (see,
e.g., Baele, Bekaert, and Inghelbrecht 2010; Campbell, Sunderam, and Viceira 2013; David and Veronesi
2013).
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mean-variance efficient fund. The third fund is an “asymmetry-variance” fund, whose com-

position is determined by the asymmetry of the risky asset returns. It takes a short position

in negatively skewed assets and a long position in positively skewed assets. The weight

an investor assigns to each fund primarily depends on her preference parameters. Using the

analytical solution, we can characterize the effects of asymmetries in returns and preferences.

If there is no return asymmetry, the asymmetry-variance fund becomes redundant, and

the standard two-fund separation applies. The investor’s optimal portfolio weight in the

single risky fund (the mean-variance fund) is determined by one parameter, effective risk

aversion. We contribute to the literature by deriving the formula for the disappointment-

averse investor’s effective risk aversion and showing that several sets of parameters of the

generalized disappointment-aversion preferences lead to the same effective risk aversion.

If returns are asymmetric, the investor also allocates some wealth to the asymmetry-

variance fund, and the relative portfolio weight in this fund is determined by her implicit

asymmetry aversion. Using a calibrated example involving bonds and stocks as risky assets,

we demonstrate that the asymmetry aversion implied by disappointment-aversion preferences

can significantly differ from the values implied by the standard power utility. The asymmetry

aversion implied by the power utility is low in magnitude, resulting in only a small investment

in the asymmetry-variance fund. In this case, return asymmetry only has a marginal effect

on optimal portfolios and, consistent with the results of Levy and Markowitz (1979) and

Hlawitschka (1994), the investor behaves as if she had mean-variance preferences.

For a disappointment-averse investor, the optimal choice strongly depends on the refer-

ence point distinguishing disappointing from nondisappointing outcomes. First, when the ref-

erence point equals the certainty equivalent of the investment, a sufficiently disappointment-

averse investor invests all wealth in the risk-free asset. In contrast, a disappointment-averse

investor whose reference point differs from the certainty equivalent always finds it optimal

to hold risky assets. Second, when the reference point is lower than the certainty equivalent,

the implicit asymmetry aversion is positive and large in magnitude. Negative skewness is
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associated with an increased probability of large losses. Therefore, an investor who focuses

on avoiding large losses will reduce investment in negatively skewed assets by taking a rela-

tively large long position (compared to a power-utility investor) in the asymmetry-variance

fund. This can induce a significant shift from the negatively skewed stocks toward bonds.

Third, when the reference point is higher than the investor’s certainty equivalent, the implicit

asymmetry aversion is negative, which leads to an implicit preference for negative skewness.

When the disappointment threshold is high, the investor pays special attention not only to

left-tail outcomes but also to central outcomes. For a given mean and variance, negative

skewness leads to a fatter left tail as well as to a shift of the mode to the right. With a high

threshold, the benefits of having a higher probability mass on small positive returns outweigh

the utility costs of the fatter left tail. Therefore, the investor shifts toward negatively skewed

assets in her risky portfolio.

Asymmetry of asset returns coupled with generalized disappointment aversion and a dis-

appointment threshold lower than the certainty equivalent can help us understand patterns

in popular portfolio advice that are puzzling to standard models. According to the standard

two-fund separation theorem, everyone should hold risky assets in the same proportion, and

only the relative weights in the risky portfolio and in cash should vary across investors (Tobin

1958). This stands in sharp contrast to the recommendations of financial advisors, across

investors with both different risk tolerances and different investment horizons.

First, regarding differences across risk tolerances, Canner, Mankiw, and Weil (1997) doc-

ument that when dividing a portfolio between cash, bonds, and stocks, financial advisors

often recommend that conservative investors should allocate more of their risky portfolio

to bonds, while aggressive investors should allocate more to stocks. Canner, Mankiw, and

Weil (1997) refer to this as the “asset allocation puzzle”. The advisors’ recommendation

can be rationalized if we think of a conservative investor as someone with a higher de-

gree of disappointment aversion. This conservative investor optimally invests more in the

asymmetry-variance fund and, consequently, achieves a higher bond/stock allocation ratio
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than does an aggressive investor.

Second, advisors often recommend that investors with short investment horizons should

favor bonds in their risky portfolios, while long-horizon investors should favor stocks. At

short investment horizons, the negative skewness deters disappointment-averse investors from

holding stocks. Assuming independent return dynamics, asset returns become less asymmet-

ric as the investment horizon increases. Hence, long-horizon investors hold relatively more

stocks than bonds. We thus provide a reason for shifting from stocks to bonds as the horizon

decreases that differs from the reason due to the effective mean reversion in prices (Campbell

and Viceira 2002, 2005) or nontradable human capital (Jagannathan and Kocherlakota 1996;

Cocco, Gomes, and Maenhout 2005).

Our work relates to the literature on the effect of skewness on optimal portfolios. The

investor’s asymmetry aversion in these studies is usually implied by a Taylor expansion of

some standard utility function (Conine and Tamarkin 1981; Jondeau and Rockinger 2006;

Guidolin and Timmermann 2008; Martellini and Ziemann 2010; Ghysels, Plazzi, and Valka-

nov 2014) or set exogenously to an ad hoc value (Mitton and Vorkink 2007; Harvey et al.

2010). Our approach differs. We consider a nonstandard utility specification and study

the sign and magnitude of the asymmetry aversion that it implies. Das and Uppal (2004)

examine portfolio choice when asset returns exhibit jumps that occur simultaneously; we

consider similar return asymmetries, but let the investor explicitly care about the down-

side risk underlying the return asymmetry. Our work also relates to that of Ang, Bekaert,

and Liu (2005), who consider portfolio choice under disappointment aversion and normally

distributed asset returns. We extend their analysis in several directions: we consider the gen-

eralized disappointment-aversion utility, study the effect of asymmetric return distributions,

and derive an analytical solution to the optimal portfolio problem that easily accommodates

multiple risky assets.

Disappointment aversion is not the only preference framework in which investors are

more sensitive to outcomes below a certain reference point. Kőszegi and Rabin (2006, 2007)
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introduce a model of reference-dependent preferences in which the agent is loss averse around

a stochastic reference point. We show that by replacing their stochastic reference point with

the constant but endogenous reference point of disappointment aversion, the general setup

of Kőszegi and Rabin (2006, 2007) nests generalized disappointment aversion as a special

case. To the best of our knowledge, this relationship between the two preference frameworks

is new to the literature. The cumulative prospect theory of Tversky and Kahneman (1992)

features loss aversion around an exogenously given reference point as one of its building

blocks. We show that if the effect of loss aversion is isolated using the so-called kinked power

utility (in which case we provide an analytical solution to the portfolio choice problem), it

leads to optimal portfolios similar to those stemming from disappointment aversion.

We focus on the portfolio choice implications of skewness; another strand of the literature

focuses on its asset pricing implications (see, e.g., Kraus and Litzenberger 1976; Harvey and

Siddique 2000; Dittmar 2002; Langlois 2013). In the Online Appendix, we derive the asset

pricing implications of our dual-asymmetry setting and show that they are similar to those

of Simaan (1993). We find a negative relationship between asset skewness and expected

return, which is consistent with Barberis and Huang (2008), Mitton and Vorkink (2007), and

Boyer, Mitton, and Vorkink (2010) regarding the overpricing of positively skewed securities.

Empirical tests of these implications using a large cross-section of assets would constitute an

interesting avenue for future research.

1 Theoretical Setup

An investor with generalized disappointment-aversion utility, as in Routledge and Zin (2010),

can allocate wealth between N risky securities (i = 1, 2, . . . , N) and a risk-free asset (i = f).

Similar to Ang and Bekaert (2002), Das and Uppal (2004), Ang, Bekaert, and Liu (2005),

and Guidolin and Timmermann (2008), we consider a finite-horizon setup with utility defined

over terminal wealth. Our model of asset returns is set in discrete time.
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1.1 Investor attitude toward risk

Generalized disappointment-aversion (GDA) preferences capture the idea that investors care

differently about downside losses than upside gains. The investor’s objective is to maximize

the utility of the certainty equivalent of terminal wealth, W . Following Routledge and Zin

(2010), the certainty equivalent of terminal wealth, R (W ), is implicitly defined by

θU (R (W )) = E [U (W )]− `E [(U (κR (W ))− U (W )) I (W < κR (W ))] , (1)

where I (·) is an indicator function that equals 1 if the condition is met and 0 otherwise, and

U (x) =


x1−γ

1− γ
if γ > 0 and γ 6= 1 ,

lnx if γ = 1 .

(2)

The parameter γ > 0 measures the investor’s risk aversion, ` ≥ 0 is the investor’s degree

of disappointment aversion, and κ > 0 is the percentage of her certainty equivalent below

which outcomes are considered disappointing. Parameter θ is defined as

θ ≡


1 if κ ≤ 1

1− ` (κ1−γ − 1) if κ > 1

(3)

and ensures that the certainty equivalent is appropriately scaled even when κ > 1, so that

the certainty equivalent of a constant value, x, equals itself (i.e., R(x) = x).

If the investor’s degree of disappointment aversion is zero (` = 0), the definition of the

certainty equivalent from (1) simplifies to

U (R (W )) = E [U (W )] . (4)

In this case, the investor has expected utility (EU) preferences with power utility. Through-
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out the paper, we refer to such an investor as the EU investor. When ` > 0, outcomes

lower than κR (W ) receive an extra weight and lower the investor’s certainty equivalent

relative to EU. As the objective is to maximize the certainty equivalent, a disappointment-

averse investor would like to avoid outcomes below κR (W ). The penalty for disappointing

outcomes increases with `, so this parameter modulates the importance of disappointment

versus satisfaction and can be interpreted as the degree of disappointment aversion.

Parameter κ sets the threshold for disappointing outcomes relative to the certainty equiv-

alent. The special case of κ = 1 corresponds to the original disappointment-aversion (DA)

preferences of Gul (1991). If κ < 1, the random future value is considered disappointing

if it lies sufficiently below today’s certainty equivalent; if κ > 1, the random future value

must be sufficiently far above the certainty equivalent to be considered not disappointing.

Previous literature on disappointment aversion is predominantly concerned with the κ < 1

case. Routledge and Zin (2010) briefly discuss the κ > 1 possibility, but otherwise the lit-

erature has ignored this setting. The setting in which the reference point is lower than the

certainty equivalent is arguably more relevant for understanding real-life investor behavior,

though it might be of general interest to study the portfolio choice implications of a high

disappointment threshold. We demonstrate that different values of κ lead to diverse investor

behavior. We refer to an investor for whom κ = 1 as a DA investor and to an investor for

whom κ 6= 1 as a GDA investor.

Terminal wealth may be written as

W = W0RW , (5)

where W0 is the initial wealth and RW is the gross return on the investor’s portfolio over the

investment horizon. Due to the homogeneity of utility function (2),

R (W ) = W0R (RW ) . (6)
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Ultimately, the investor’s objective is simply to maximize the certainty equivalent of the

portfolio gross return, R (RW ), given by

θU (R) = E [U (RW )]− `E [(U (κR)− U (RW )) I (RW < κR)] , (7)

in which we have used the short-hand notation R for R (RW ). Maximizing the certainty

equivalent leads to the same solution as does maximizing its logarithm, η ≡ lnR. We show

in Appendix A that the investor’s log certainty equivalent is implicitly given by

η =



1

1− γ
lnE [exp ((1− γ) rW )]

− 1

1− γ
ln
(
θ + `κ1−γ (1− E [exp ((γ − 1) pW )])

) if γ > 0 and γ 6= 1

E [rW ]− `E [pW ] + `max (lnκ, 0) if γ = 1

, (8)

where

pW ≡ max (lnκ+ η − rW , 0) (9)

corresponds to the payoff of a European put option on the portfolio’s log return, rW , with a

strike equal to lnκ+ η, the investor’s endogenous threshold of disappointment.

The intuition for (8) is most straightforward when γ = 1. The investor’s log certainty

equivalent is a sum of two components: the first is the log certainty equivalent of the EU

investor, and the second is a downside risk penalty for achieving a portfolio return below the

endogenous disappointment threshold. The downside risk is valued as a European put option

on the portfolio return with a strike equal to the disappointment threshold. If the portfolio

return at the end of the investment period is below the disappointment threshold, the option

matures in the money, reducing the utility of the investor. The total cost of downside risk is

the expected payoff of this put option, E [pW ], times the degree of disappointment aversion,

`. The parameter ` also may be interpreted as the marginal cost of downside risk, as a

one-basis-point increase in E [pW ] translates into an `-basis-point decrease in the investor’s
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certainty equivalent. When γ 6= 1, the intuition remains the same. The first component

of (8) is the log certainty equivalent of the EU investor. The second component is the

downside risk penalty, which is nonpositive by definition and a decreasing function of the

put option’s payoff.

1.2 Model of asset returns

We propose a simple extension to the multivariate normal distribution to capture the asym-

metry of asset returns. Specifically, we assume that log returns on N risky assets are de-

scribed by the model

rt = µ− σ ◦ δ + (σ ◦ δ) ε0,t +
(
σ ◦
√
ι− δ ◦ δ

)
◦ εt , (10)

where µ, σ, and δ are N -dimensional vectors, ι is a vector of ones, and ◦ denotes the Schur

product (element-wise product) of vectors. The scalar ε0,t is a common shock across all

assets that follows an exponential distribution with a rate parameter equal to one.2 The

N -dimensional vector, εt, represents asset-specific shocks and has a multivariate normal

distribution, independent of ε0,t, with standard normal marginal densities and correlation

matrix Ψ. Parameters µ, σ, Ψ, and δ together describe the return-generating model. If

δ = 0, then rt follows a multivariate normal distribution with mean µ, standard deviation

vector σ, and correlation matrix Ψ. Hence, our setup conveniently nests the case in which

asset returns are jointly lognormal. In our extended model, N additional parameters in δ

are needed compared with the multivariate normal distribution; these additional parameters

describe the asymmetry of returns. Note that both Barberis and Huang (2008) and Mitton

2That is, ε0,t ∼ exp (1). We also have considered an alternative model of asset returns, known as
the extended skew-normal distribution, in which the common shock has a truncated normal distribution.
The normal-exponential model in (10) has several advantages. First, the formulas for the return moments
are simpler. Second, the extended skew-normal model needs one additional parameter. Third, we can
derive the exact distribution of multiperiod returns for the normal-exponential model, while we have to use
approximated distributions if we work with the skew-normal model. Moreover, Adcock and Shutes (2012)
show that the normal-exponential model is a certain limiting case of the extended skew-normal distribution,
and the two models lead to very similar results in empirical applications.
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and Vorkink (2007) consider a case in which only one of the N risky assets is skewed,

the others having symmetric returns. The model in (10) nests this scenario by setting

δ1 = ... = δN−1 = 0 and letting only δN differ from zero.

The log return on asset i may be written as

ri,t = µi − σiδi + (σiδi) ε0,t +

(
σi

√
1− δ2

i

)
εi,t . (11)

Parameter δi, belonging to the interval (−1, 1), determines the sensitivity of the asset re-

turn to the exponentially distributed common shock ε0,t. The exponential distribution is

suitable for characterizing the occurrence of extreme events, such as large and infrequent

losses. For example, the waiting time until the next event in a Poisson process has an ex-

ponential distribution. The Poisson process is often used to characterize the occurrence of

jumps in continuous-time models (see, e.g., Merton 1976; Bates 1996; Broadie, Chernov,

and Johannes 2007). Assets with large negative sensitivities to ε0,t are subject to large, but

infrequent, negative returns, while assets with large positive sensitivities are subject to large,

but infrequent, positive returns. Model (10) assumes that the occurrence of such extreme

movements is simultaneous across assets, so it may be interpretable as a systematic event.

In this sense, our discrete-time return dynamics share the properties of the continuous-time

dynamics considered by Das and Uppal (2004).

It is straightforward to show that the mean, variance, skewness, and excess kurtosis of

ri,t are given by

E (ri,t) = µi , V ar (ri,t) = σ2
i , Skew (ri,t) = 2δ3

i , Xkurt (ri,t) = 6δ4
i . (12)

The correlation and coskewness of the returns of asset i and asset j are

Corr (ri,t, rj,t) = ψij

√
1− δ2

i

√
1− δ2

j + δiδj ,

Coskew (ri,t, rj,t) ≡
E
[
(ri,t − E (ri,t))

2 (rj,t − E (rj,t))
]

V ar (ri,t)
√
V ar (rj,t)

= 2δ2
i δj .

(13)
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The formulas in (12) and (13) illustrate how the vector δ characterizes the nonnormality of

returns, as it leads to nonzero skewness, coskewness, and excess kurtosis. The parameters of

the distribution can be estimated by the generalized method of moments (GMM) using the

moments given in (12) and (13). The investment horizon is assumed to be one period for

the main part of the paper, but we also consider longer investment horizons in Section 3.2.

The asymmetry of asset returns is attributed to a common source of risk in the normal-

exponential model (10). Boyer, Mitton, and Vorkink (2010) argue that idiosyncratic skewness

is also important in explaining cross-sectional differences in asset returns. In the Online

Appendix we discuss a simple extension to the normal-exponential model that accounts for

the assets’ idiosyncratic skewness. We also demonstrate that the main conclusions regarding

optimal portfolios do not much change when the extended model is considered.

1.3 Optimal portfolio

The second-order Taylor approximation à la Campbell and Viceira (2002) of the portfolio

log return is

rW,t ≈ rf + w>
(
rt − rf ι+

1

2
σ2

)
− 1

2
w>Σw , (14)

where rf is the risk-free rate, w is the vector of portfolio weights for risky assets, ι is a

vector of ones, and σ2 is the diagonal of the variance-covariance matrix Σ.3 If individual

asset returns are characterized by the return-generating model (10), then using the above

approximation, the portfolio log return is also characterized by the normal-exponential model

rW,t = µW − σW δW + (σW δW ) ε0,t +

(
σW

√
1− δ2

W

)
εW,t , (15)

3In the Online Appendix, we find that the approximation works well in our calibration exercise. An
alternative is to consider a third-order approximation instead of (14). However, the order of approximation
affects only the mean of the portfolio log return, that is, µW from Equation (16), but not the higher moments.
We find that (14) approximates the true mean of the portfolio log return very well and that the third-order
alternative does not lead to a considerable improvement.
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with

µW = rf +w>
(
µ− rf ι+

1

2
σ2

)
− 1

2
w>Σw , σ2

W = w>Σw , δW =
w> (σ ◦ δ)

σW
, (16)

and where εW,t is a standard normal shock independent of ε0,t. Given our setup, the following

proposition describes the optimal portfolio.

Proposition 1.1. The investor’s optimal asset allocation may be written as

w =
1

γ̃

(
wMV + χ̃wAV

)
, (17)

where

wMV ≡ Σ−1

(
µ− rf ι+

1

2
σ2

)
and wAV ≡ Σ−1 (σ ◦ δ) . (18)

Coefficients γ̃ and χ̃ depend on the optimal portfolio weight vector, w (i.e., they are endoge-

nously determined). Analytical expressions for γ̃ and χ̃ are given in Appendix B.

Proof. See Appendix B.

Our setup leads to a three-fund separation strategy similar to that of Simaan (1993). The

investor allocates her wealth to two risky funds and invests the remainder of her wealth in

the risk-free asset. We call the first risky fund, wMV, the “mean-variance” fund because it

is the solution to the mean-variance optimal portfolio problem. Note that the same fund

appears in Campbell and Viceira (2002), in the solution to the lognormal model with power

utility. We call the second risky fund, wAV, the “asymmetry-variance” fund because its

composition depends on the asymmetry vector, δ, and the variance-covariance matrix of the

risky asset returns. It is the solution to an asymmetry-variance optimal portfolio problem

similar to the mean-variance one.

The weights that the investor assigns to the risky funds are determined by γ̃ and χ̃.

These coefficients depend not only on the preference parameters (i.e., γ, `, and κ) but

also on the optimal asset allocation, w, itself and the certainty equivalent, η. That is, the
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coefficients γ̃ and χ̃ and the certainty equivalent η are all endogenous to the model. To solve

for these values and for the optimal allocation, w, Equations (8) and (17) must be solved

simultaneously.

Given the endogenous values of γ̃ and χ̃, the optimal allocation in (17) also can be

achieved by solving the following mean-variance-asymmetry investment problem:

max
w

µW − rf −
γ̃ − 1

2
σ2
W + χ̃σW δW , (19)

where µW and σ2
W are the mean and variance, respectively, of the portfolio log return given in

Equation (16), while δW describes its asymmetry. Therefore, we can interpret the coefficient

γ̃ as the effective risk aversion and the coefficient χ̃ as the implicit asymmetry aversion of

the investor. The finding that effective risk aversion is endogenous under disappointment-

aversion preferences is consistent with the discussions presented by Routledge and Zin (2010)

and Bonomo et al. (2011) in an intertemporal consumption-based general equilibrium setting.

However, unlike these authors, we explicitly derive the formula of effective risk aversion in our

partial equilibrium setting. This provides a novel way to quantify the effect of disappointment

aversion on the optimal portfolio choice. The mean-variance-asymmetry problem (19) is

similar to that in Mitton and Vorkink (2007) and Harvey et al. (2010), but differs in several

ways: the asymmetry measure is not the third central moment of returns; the coefficient

governing preference for asymmetry, χ̃, is not positive a priori; and our solution is analytical.

We show in the Online Appendix that the three funds in (17) span the mean-variance-

asymmetry efficient frontier, which contains portfolios that minimize portfolio variance, σ2
W ,

for a given level of mean, µW , and asymmetry, σW δW . Therefore, the optimal portfolios

given by (17) are on the efficient frontier.

The lack of asymmetry of asset returns (δ = 0) implies both wAV = 0 and χ̃ = 0. Hence,
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the optimal portfolio rule simplifies to

w =
1

γ̃
wMV . (20)

When returns are symmetric, investors allocate their wealth between the mean-variance

fund and the risk-free asset. Consequently, when observing a particular asset allocation, we

cannot determine whether it was chosen by a disappointment-averse or a disappointment-

neutral investor. In other words, different combinations of the preference parameter values

γ, `, and κ lead to the same γ̃. Therefore, the concept of effective risk aversion provides

a convenient way to compare the effects of different preferences in the presence of return

asymmetries. Comparing the optimal choices of different investors (e.g., power-utility versus

disappointment-averse investors) who have the same effective risk aversion isolates the effect

of return asymmetries, as these investors would choose the same portfolios if returns were

symmetric. If the investor has expected utility, the effective risk aversion is simply the

curvature parameter of the power utility (` = 0 implies γ̃ = γ). Disappointment aversion

(` > 0), on the other hand, implies γ̃ > γ; that is, a disappointment-averse investor reduces

investment in risky assets, investing a larger fraction of wealth in cash.

2 Empirical Application

2.1 Data and parameter estimation

In this section we investigate how investors who differ in their degree of risk aversion and

disappointment aversion allocate their wealth among three assets: cash, bonds, and stocks.4

We estimate return parameters using monthly U.S. data from July 1952 to December 2014,

obtained from the Center for Research in Security Prices (CRSP). We start our sample from

1952 to avoid the period before the 1951 Treasury-Fed Accord similar to Campbell and

4We will later comment on other asset classes, including growth and value stocks, international equity,
and corporate bonds.
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Shiller (1991) and Campbell and Ammer (1993). The risk-free rate is the average of the log

return on the 30-day Treasury bill from the CRSP Fama Risk-Free Rates file, referred to

simply as “cash”. The bond return is the return on the 10-year government bond index from

the U.S. Treasury and Inflation Series file in CRSP. The stock return is the value-weighted

return on the NYSE, NASDAQ, and AMEX. The excess log bond return is the difference

between the log return on bonds and the risk-free rate. Similarly, the excess log stock return

is the difference between the log return on stocks and the risk-free rate.

Table 1 presents estimation results for the return distribution of the two risky assets as

in (10). Subscript “B” denotes bonds, and subscript “S” denotes stocks. The parameters

are estimated by minimizing the distance between model-implied moments and their sample

counterparts, using the generalized method of moments (GMM) with an identity-weighting

matrix. The GMM estimation is overidentified, fitting the two means, the two volatilities,

the correlation, the two skewness values, and the two coskewness values (there are nine

moments to fit and seven parameters to estimate). Panel A of Table 1 presents sample and

fitted moments together with parameter estimates from the return-generating model. Stock

index returns are highly negatively skewed, which is a well-known stylized fact. The proposed

model of asset returns captures all key moments, providing a simple characterization of the

return distribution. Panel A of Figure 1 shows the sample (kernel-smoothed) density of

the stock return distribution, together with the densities implied by the fitted normal and

normal-exponential models. The figure confirms that the normal-exponential density is much

closer to the empirically observed one.

We use the parameter estimates in Table 1 to compute, via simulations, two additional

statistics. Panel B in Figure 1 shows the stocks’ expected shortfall at various quantiles. The

figure confirms that the normal distribution does not adequately capture the fat left tail of

the stock return distribution, though the shortfall values implied by the normal-exponential

model are close to the actual sample estimates. Panel C shows the correlation between bonds

and stocks conditional on the stock return falling below (for q ≤ 0.5) or above (for q > 0.5)
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a given quantile of its distribution. Sample estimates indicate that long-term bonds tend to

be negatively correlated with stocks conditional on down markets and positively correlated

with stocks conditional on up markets, which is in line with previous literature (see, e.g.,

Baele, Bekaert, and Inghelbrecht 2010; Campbell, Sunderam, and Viceira 2013; David and

Veronesi 2013). The normal-exponential model captures this pattern, while the multivariate

normal model fails to do so. The results in Table 1 and Figure 1 illustrate the ability of the

model (10) to match key features of asset returns.

In the Online Appendix we demonstrate that the normal-exponential model also captures

well the asymmetric correlations between various stock portfolios. In particular, correlations

between stocks (e.g., between growth and value stocks or between different international

equity portfolios) tend to be greater for downside than for upside moves as documented by

Longin and Solnik (2001), Ang and Chen (2002), and Hong, Tu, and Zhou (2007). Ang

and Chen (2002) argue that asymmetric conditional correlations are fundamentally different

from other measures of asymmetries, such as skewness and coskewness. However, we find

that the normal-exponential model, designed to match the third-order moments, also does a

good job in matching the asymmetric conditional correlation patterns.

2.2 Optimal portfolios

Given the estimated return distribution, the mean-variance fund, wMV, and the asymmetry-

variance fund, wAV, can be calculated according to (18). Each fund can be normalized by

the absolute value of the sum of its weights:

w̄MV ≡ wMV

|ι>wMV|
and w̄AV ≡ wAV

|ι>wAV|
. (21)

Panel B of Table 1 shows the composition of these normalized funds. The mean-variance fund

assigns a positive weight to both risky assets as they have positive expected excess returns.

As the stocks are negatively skewed, the asymmetry-variance fund assigns a negative weight
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to them, and the bond weight is positive.5 Note that the weights in the asymmetry-variance

fund are fairly large, though the actual positions investors take in the fund lead to reasonable

overall weights (see Table 2). Using the normalized funds from (21), the optimal portfolio

rule in (17) can be rewritten as

w = αMVw̄MV + αAVw̄AV , (22)

where

αMV ≡ 1

γ̃

∣∣ι>wMV
∣∣ and αAV ≡ χ̃

γ̃

∣∣ι>wAV
∣∣ (23)

are the weights assigned to the normalized mean-variance and asymmetry-variance funds,

respectively. Note that in the current calibration, since ι>wAV is negative, the optimal

investment in cash is 1− αMV + αAV.

Figure 2 summarizes how investors with different preferences choose their optimal port-

folios in our calibrated example. The weight assigned to the mean-variance fund, αMV, is

on the horizontal axis and the relative weight of the asymmetry-variance fund, αAV/αMV,

is on the vertical axis. Equations in (23) show that αMV is a scalar multiple of 1/γ̃, and

αAV/αMV is a scalar multiple of χ̃. Consequently, each optimal portfolio can be equivalently

represented in the (γ̃, χ̃) space. Figure 2 shows the corresponding γ̃ and χ̃ values on its top

and right axes, respectively. All curves start at the same point corresponding to the investor

with γ = 2 and ` = 0. The solid line corresponds to the EU investor and shows the effect

of increasing γ from 2 to 30. The remaining curves correspond to disappointment-averse in-

vestors with different κ values and show the effect of increasing ` from 0 to 3, while keeping

γ = 2 fixed. Increasing γ for the EU investor or increasing ` for the disappointment-averse

investor corresponds to moving left along the horizontal axis.

As we argued previously, when returns are jointly lognormal, we cannot differentiate

between disappointment-averse and EU investors based on their optimal portfolios. Since

5Note that the sum of weights in w̄AV is –100%. Increasing the weight of w̄AV in the portfolio corresponds
to taking a short position in stocks and a long position in cash and bonds.
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the optimal choice is described by the single coefficient γ̃, the preference parameters γ, `,

and κ cannot be uniquely determined. When returns are asymmetric, the two coefficients γ̃

and χ̃ (or equivalently the weights αMV and αAV) determine the optimal portfolio. There

are two coefficients and three preference parameters, so γ, `, and κ still cannot be uniquely

determined. However, a lot more can be learned about the investor’s preferences from the

observed optimal portfolio than in the lognormal case based on the patterns in Figure 2.

First, αMV reaches zero only in the case of the DA investor (κ = 1). That is, the DA

investor is the only one who, with strong enough disappointment aversion, may choose not

to hold risky securities at all. Note that in our calibration any DA investor with ` > 0.43

chooses to invest all her wealth in cash. Second, the EU investor chooses a positive weight

in the asymmetry-variance fund for all values of γ, but this weight is very small. Even at

its highest value in Figure 2, the relative weight of the asymmetry-variance fund in the EU

investor’s optimal portfolio is only 0.44%. This emphasizes that EU investors with power

utility pay relatively little attention to asymmetries in asset returns. Third, GDA investors’

weight in the asymmetry-variance fund (and consequently their implicit asymmetry aversion)

can be much larger in magnitude than for any EU or DA investor. Return asymmetries play

a much bigger role in the choice of GDA investors. Therefore, an optimal portfolio with

a considerable weight in the asymmetry-variance fund belongs to a GDA investor (with

` > 0 and κ 6= 1). Fourth, a long or a short position in the asymmetry-variance fund can

differentiate between GDA investors with κ < 1 and κ > 1.

In what follows, we discuss in detail the above results. We start with the observation

that DA investors with strong enough disappointment aversion do not hold risky securities.

It is important to note that this result has nothing to do with return asymmetries as it

also arises when log returns are jointly normal. Ang, Bekaert, and Liu (2005) were the

first to demonstrate, in a setting with a single risky asset, that DA preferences lead to

nonparticipation in the risky asset market. Farago (2014) demonstrates that κ = 1 is a

knife-edge case in the model, as for GDA investors with κ 6= 1 investing in the risk-free
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asset only is never optimal.6 Figure 2 shows that the results in Farago (2014) extend to

the setup with multiple risky assets. Return asymmetries do not have a big impact on a

DA investor’s optimal choice, since starting from moderate levels of disappointment aversion

investors with κ = 1 do not hold risky securities, regardless of the presence or absence of

return asymmetries.

Return asymmetries can have a substantial effect on the portfolios of GDA investors

(κ 6= 1). Panel A of Table 2 presents details of the choice of selected GDA investors. To

highlight the effect of GDA preferences, panel B describes the choice of the EU investor

who has the same effective risk aversion as does the corresponding GDA investor in the

same column. Consequently, their investment in the mean-variance fund is exactly the same

and the difference between their optimal portfolios comes from the weights they assign to

the asymmetry-variance fund. In other words, the GDA investor and the comparable EU

investor would have the same optimal portfolio if return asymmetries were absent, so the

difference between their actual portfolios is driven by return asymmetries.

GDA investors pay special attention to disappointing outcomes. When κ < 1, the disap-

pointment threshold is typically negative and it decreases by roughly one percentage point

when κ decreases by 0.01, as shown in Table 2. That is, the GDA investor with κ < 1

pays special attention to the left tail of the portfolio’s return distribution. For a given mean

and variance, negative skewness implies a fatter left tail of the return distribution, hence an

increased probability of relatively bigger losses. This is illustrated in panel A of Figure 1,

where the normal and normal-exponential densities have the same mean and variance, but

the latter is negatively skewed and has a fatter left tail. Therefore, the GDA investor with a

focus on avoiding left-tail outcomes shifts from negatively skewed assets toward nonskewed

6For formal proofs and a detailed discussion of the single-risky-asset case, we refer the reader to Farago
(2014), but we provide some intuition here. When the disappointment threshold equals the certainty equiv-
alent (κ = 1), the cash-only portfolio is the unique portfolio that avoids disappointment in all future states
of the world. Therefore, a DA investor who wants to avoid disappointment may prefer this portfolio to any
other possible portfolio. When κ < 1, the disappointment threshold is lower than the certainty equivalent
and some other (risky) portfolios also avoid disappointment. The GDA investor with κ < 1 will prefer some
of these portfolios to holding only cash. When κ > 1, no portfolios avoid disappointment in all future states,
so the cash-only portfolio is not a special one.
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or positively skewed assets in her risky portfolio. Consequently, she takes a large long posi-

tion (compared with the EU investor) in the asymmetry-variance fund, indicating a positive

implicit asymmetry aversion. This implies that a GDA investor with κ < 1 shifts from stocks

toward bonds in our calibration. As a result, the disappointment probability is much lower

than that of the comparable EU investor.7

When κ > 1, the disappointment threshold is positive and it increases by roughly one

percentage point when κ increases by 0.01. The GDA investor pays special attention to

all outcomes below the threshold; these include not only left-tail outcomes but also central

outcomes when the threshold is high. As illustrated in panel A of Figure 1, for a given

mean and variance, negative skewness not only leads to a fatter left tail but also implies

that the mode of the return distribution shifts to the right. For the GDA investor with

κ > 1, the benefits of having a higher mass on relatively small positive returns outweigh

the costs of the fatter left tail. Therefore, she shifts toward negatively skewed assets in her

risky portfolio, which is done by taking a short position in the asymmetry-variance fund

(and implies a negative implicit asymmetry aversion). A GDA investor with κ > 1 shifts

from bonds toward stocks in our calibration.

In the Online Appendix we provide another portfolio choice example, in which the two

risky assets have the same mean and standard deviation and differ only in their skewness.

In this case the difference between the choices of different GDA investors can only be driven

by the difference in return asymmetries. The same pattern arises as above, namely, that

κ < 1 leads to a positive implicit asymmetry aversion, while κ > 1 leads to a negative one.

These results reassure us that the difference in the choice of GDA investors in our benchmark

calibration is indeed driven by return asymmetries.

Figure 2 and Table 2 illustrate how optimal portfolios change with the preference pa-

7For example, the disappointment probability of the GDA investor with κ = 0.96 is 2% in Table 2,
while it is 4% for the comparable EU investor. The disappointment probability of the optimal portfolio is
πW ≡ Pr [rW,t ≤ lnκ+ η]. Note that the comparable EU investor does not become disappointed, though
we can calculate the probability that the portfolio return is below the disappointment threshold (lnκ + η)
of the corresponding GDA investor.
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rameter values. We can also study the sensitivity of the optimal portfolio weights to the

asymmetry of returns. In our benchmark calibration, we estimate the skewness of monthly

stock returns to be –0.81. However, return asymmetries exhibit significant time variation

and there might be periods with much larger skewness. Neuberger (2012), for example,

estimates that the expected skewness of the S&P 500 index at the quarterly horizon varies

between –1.8 and –1.0 over the 1998-2010 period. In Figure 3 we use the same distributional

parameters as in the main calibration, but vary the asymmetry parameter of the stock, δS,

so that stock skewness varies between –1.8 and –0.3. The vertical line corresponds to our

benchmark calibration. The figure presents optimal portfolio weights for an EU investor

(γ = 6) and two GDA investors, one with κ < 1 (γ = 2, ` = 2, and κ = 0.96) and another

with κ > 1 (γ = 2, ` = 2, and κ = 1.04). Optimal portfolio weights do not vary much

for the EU investor, providing further evidence that return asymmetries have little effect on

the portfolio choice of power-utility investors. The GDA investor with a low disappointment

threshold further reduces her stock investment and increases her bond investment when the

former becomes more negatively skewed. At a stock skewness of –1.8, her stock and bond

weights are 28% and 62%, respectively. In contrast, the GDA investor with a high disap-

pointment threshold shifts her risky portfolio from bonds toward stocks even further as the

stock skewness becomes more pronounced; at –1.8 skewness, the stock and bond weights are

86% and 1%, respectively.

2.3 Costs of ignoring skewness

Following Das and Uppal (2004), we quantify the certainty-equivalent cost of ignoring return

asymmetries. An investor who ignores asymmetry in the distribution of asset returns and

chooses her optimal portfolio as if log asset returns were normally distributed with the

same mean and variance-covariance matrix as the true distribution, chooses allocation w′.

That suboptimal allocation corresponds to a certainty equivalent, R′, under the true return

distribution. The cost of ignoring skewness can be measured in absolute terms by R−R′,
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or in relative terms by
R′−Rf
R−Rf

. The latter is the excess certainty equivalent of the suboptimal

allocation relative to the excess certainty equivalent of the optimal allocation.

Table 3 shows the absolute and relative costs of ignoring skewness for different investors

using the annualized values of the certainty equivalents R and R′. Note that the absolute

measure is multiplied by 1000, so that it indicates the cost for an investor with an initial

wealth of $1000. For EU investors, the certainty-equivalent cost of ignoring skewness is

almost negligible, the annualized cost being less than $0.02 in all the cases. This is in line

with the findings of Das and Uppal (2004).8 The relative measures indicate that EU investors

achieve more than 99.9% of the overall optimal excess certainty equivalent even if they ignore

return skewness. For GDA investors, the cost of ignoring skewness is more substantial. When

κ = 0.96, the cost is $4.20, considerably higher than for the comparable EU investor. In

relative terms, this investor achieves only 83.3% of the optimal excess certainty equivalent if

she ignores return skewness. As κ increases, the cost of ignoring return asymmetries declines,

but it is still much higher for all GDA investors than for the comparable EU investors.

2.4 More than two risky assets

The three-fund separation result lies at the heart of Proposition 1.1. That is, regardless of

the number of risky assets, the optimal portfolio is made up of a risk-free asset and two

risky funds: the mean-variance and the asymmetry-variance funds. The weights assigned to

these funds depend on the investor’s effective risk aversion and implicit asymmetry aversion.

Therefore, increasing the number of risky assets beyond two or considering different risky

assets does not provide further insight into how the model works. We illustrate this in the

Online Appendix by considering a portfolio choice problem with three risky assets (treasury

bonds, growth stocks, and value stocks) and by considering additional asset classes, including

international equities and corporate bonds. Considering additional asset classes illustrates

8Das and Uppal (2004) measure the cost of ignoring return asymmetries (caused by jumps that occur
simultaneously across assets) for EU investors. They find similar costs for an investor with γ = 5 and a
one-year horizon when the portfolio consists of equity indexes of various developed countries.
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the empirical implications of the model regarding the effect of return asymmetries on optimal

portfolios. Since various stock portfolios (e.g., portfolios of value stocks, growth stocks, and

emerging market equities) and corporate bond portfolios display negative skewness, they

enter the asymmetry-variance fund with a short position. Hence, a GDA investor with

κ < 1 (κ > 1) underweights (overweights) these assets in her optimal portfolio relative to

the comparable EU investor.

3 Common Portfolio Recommendations

3.1 Asset-allocation puzzle of Canner, Mankiw, and Weil (1997)

The two-fund separation strategy arising from standard models implies that all investors

should hold risky assets in the same proportion, and should change only their relative

weights in the risky portfolio and in cash according to their risk appetite. Consequently,

all investors should have the same bond/stock ratio in their portfolios. The asset-allocation

puzzle of Canner, Mankiw, and Weil (1997) is that, in contrast with the above predictions,

financial advisors recommend different ratios for different investors: a high bond/stock ratio

for “conservative” investors and a low ratio for “aggressive” investors.9 Table 4 is adapted

from Canner, Mankiw, and Weil (1997) and presents the recommendations of four finan-

cial advisors, together with the assumed asset returns from the original paper. Note that

Canner, Mankiw, and Weil (1997) do not report asset skewness, so we use values from our

calibration. The results are not sensitive to moderate changes in these skewness values. For

each advisor in Table 4, the bond/stock ratio (wB/wS) increases as we move from aggressive

toward conservative portfolios.

9Evidence suggests that individual investors consider the recommendations of a financial advisor when
making portfolio decisions. Bluethgen et al. (2008) report that 66% of the individual investors consult their
advisors for investment advice from a sample provided by a large German retail bank. Guiso and Sodini
(2013) refer to a survey of Italian individual investors with checking accounts at a large European banking
group, where 60% of the investors report relying on the help of an advisor or intermediary when making
financial decisions.
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Given the distributional assumptions in panel A of Table 4, we can determine the compo-

sition of the mean-variance and asymmetry-variance funds using (18). The resulting normal-

ized funds, w̄MV and w̄AV, are given in the last two columns of panel A. Equation (22) shows

that each recommended portfolio can be constructed using these normalized funds. Since

there are two equations (one for the stock weight, wS, and one for the bond weight, wB),

there is a unique pair of fund weights, αMV and αAV, that yields a given recommended

portfolio. Equation (23) further shows that a given pair of αMV and αAV corresponds to a

unique pair of effective risk aversion (γ̃) and implicit asymmetry aversion (χ̃). The last four

columns of panel B present these quantities (αMV, αAV/αMV, γ̃, and χ̃) for each recom-

mended portfolio. As we move from aggressive toward conservative portfolios, the weight in

the mean-variance fund decreases, which is consistent with increasing effective risk aversion.

At the same time, the relative weight in the asymmetry-variance fund increases, leading to

an increase in the bond/stock allocation ratio and consistent with increasing implicit asym-

metry aversion. Comparing the αAV/αMV and χ̃ values from Table 4 with those in Figure 2,

we can see that the values corresponding to moderate and conservative portfolios are much

higher than those implied by EU preferences, though they are in line with the choice of GDA

investors for whom κ < 1. That is, return asymmetries together with increasing disappoint-

ment aversion from aggressive to conservative investors offers an explanation for the asset

allocation puzzle of Canner, Mankiw, and Weil (1997).10

3.2 Short- and long-term portfolios

Next, we examine the effect of the investment horizon on optimal portfolios assuming that the

one-period returns are independent and identically distributed (IID). Consider the H-period

10Other potential explanations have been proposed. Bajeux-Besnainou, Jordan, and Portait (2001) explain
the puzzle by assuming that the investor’s horizon may exceed the maturity of the cash asset. Shalit and
Yitzhaki (2003) use conditional stochastic dominance arguments to demonstrate that advisors, acting as
agents for numerous clients, recommend portfolios that are efficient for some risk-averse investors. Campbell
and Viceira (2001) rationalize the popular advice in the context of intertemporal asset allocation models
with time-varying expected returns.
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log return between dates t and t+H,

rt,t+H ≡
H∑
h=1

rt+h . (24)

The H-period returns follow

rt,t+H = µH −
√
H (σH ◦ δ) + (σH ◦ δ) ε0,t,t+H +

(
σH ◦

√
ι− δ ◦ δ

)
◦ εt,t+H , (25)

where,

ε0,t,t+H ∼ Γ
(
H, 1/

√
H
)
, εt,t+H ∼ N (0,Ψ) , µH = Hµ , σH =

√
Hσ . (26)

Note that the parameters δ and Ψ do not have an H subscript, since their values are inde-

pendent of the horizon.11 The moments of the H-period return of asset i are given by

E (ri,t,t+H) = Hµi , V ar (ri,t,t+H) = Hσ2
i ,

Skew (ri,t,t+H) =
2δ3
i√
H

, Xkurt (ri,t,t+H) =
6δ4
i

H
.

(27)

Both the mean and variance of the assets grow by H as the horizon increases. Asset skewness,

on the other hand, is scaled by 1/
√
H. That is, skewness diminishes as H increases and the

distribution of long-horizon returns is closer to normal than is the distribution of short-

horizon returns. In fact, for large values of H the distribution of the common shock ε0,t,t+H

converges to a normal distribution, and the asset log returns become jointly normal.

The optimal asset allocation for an investor with horizon H may be written as

wH =
1

γ̃H

(
wMV + χ̃Hw

AV
H

)
. (28)

11The key result for deriving the return-generating model of the H-period returns is that the sum of H
IID exponential variables is a random variable that follows a gamma distribution with a shape parameter H.
Note also that for H = 1, the model in (25) is equivalent to the model in (10), since Γ (1, 1) ≡ exp (1).
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Note that wMV does not have an H subscript. The mean-variance fund has the same

composition, regardless of the investor’s horizon. Although the second risky fund, wAV
H ,

does have a horizon subscript, note that wAV
H = wAV/

√
H. That is, investors with different

horizons will use the same asymmetry-variance fund in their portfolios, but the size of their

investment will be different. The parameters describing the risk attitude of the investor, γ̃H

and χ̃H , depend on the horizon.12

Consider again our example with a stock, a bond, and a risk-free asset. We take the

parameters µ, σ, δ, and ψ from the estimation using monthly data in Table 1, and assume

that the H-month returns are generated by the model in (25). The “stock” is the value-

weighted portfolio of the CRSP stocks held for H months. The “bond” is a bond portfolio

that is rolled over at the end of each month during the H-month holding period to keep the

maturity at the rollover date fixed at 10 years. Finally, we simply assume that the H-period

risk-free return is Hrf .

For a given level of effective risk aversion, γ̃H , the only part of the optimal portfolio rule

(22) that changes with the investment horizon is αAV, i.e., the weight assigned to w̄AV. To

illustrate the effect of horizon in our calibration, for each H we fix γ̃H = 5 (consequently, fix

αMV) and calculate the corresponding weight in the asymmetry-variance fund for different

investors. For an EU investor, γ̃H = 5 implies γ = 5. For a GDA investor, a given value of

γ̃H can correspond to different sets of parameter values. We fix γ = 2 and ` = 2, and choose

the value of κ that leads to γ̃H = 5. Note that two different κ values lead to γ̃H = 5, one

such that κ < 1 and the other such that κ > 1. We report results for both cases.

Figure 4A shows how αAV/αMV, the relative weight in the normalized asymmetry-

variance fund, changes with the horizon. Return asymmetries do not have a large effect

on the EU investor’s portfolio as her relative weight barely changes with H. For a GDA

investor, however, the investment horizon is an important factor determining the optimal

portfolio. Over short horizons, GDA investors hold different αAV/αMV ratios than do EU

12Analytical formulas for the horizon-dependent effective risk aversion γ̃H and implicit asymmetry aversion
χ̃H are given in the Online Appendix.
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investors due to asymmetries in returns. However, these return asymmetries become less pro-

nounced as the horizon increases. Hence, the αAV/αMV of the GDA investors approaches

that of the EU investors. Disappointment aversion (with κ < 1) together with skewness

prompts a shift from bonds to stocks as the investment horizon increases. This is a dif-

ferent mechanism from the often-emphasized effect of mean reversion in prices (see, e.g.,

Campbell and Viceira 2002, 2005) or nontradable human capital (see, e.g., Jagannathan and

Kocherlakota 1996; Cocco, Gomes, and Maenhout 2005).

When returns are IID, the effect of skewness quickly disappears as the horizon increases.

However, there is evidence that return skewness does not diminish with the investment

horizon as quickly as implied by the IID assumption.13 To illustrate the effect of persistence

in skewness, instead of relying on the IID assumption to calculate H-period returns, we fit

our return-generating model (10) to returns aggregated over H = 1, ..., 12 months. Figure 4B

shows the stock’s skewness over different horizons. The sample estimates are further from

zero than the values implied by the IID assumption. In fact, the skewness of the H-month

return is greater in magnitude than that of the one-month return for all H > 1. Figures

4C and 4D show the optimal stock weight and bond/stock allocation ratio, respectively,

for the EU investor and two GDA investors (one with κ < 1 and the other with κ > 1) in

the IID case (labeled “IID”) and for the same GDA investors using the estimated H-period

returns (labeled “Sample”). The optimal choice of the GDA investor with κ < 1 does not

converge to that of the EU investor for holding periods up to one year when the estimated

H-period returns are used. Since the κ < 1 case is arguably more relevant empirically, this

evidence suggests that return asymmetry may have a larger effect on optimal portfolios for

longer investment horizons than in an IID calibration.

13Neuberger (2012) develops an unbiased estimate of the third moment of long-horizon returns from high-
frequency returns. He finds that the skewness of U.S. equity index returns does not diminish with the
horizon; it actually increases with horizons up to a year, and its magnitude is economically important.
Ghysels, Plazzi, and Valkanov (2014) introduce an asymmetry measure based on conditional quantiles and
find that the return asymmetry is more pronounced at the quarterly frequency than at the monthly frequency
for the United States and many other countries in their sample.
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4 Other Reference-Dependent Preference Frameworks

Disappointment aversion is not the only preference framework building on the idea that

investors are more sensitive to outcomes below a certain reference point. Other notable

examples are the reference-dependent preferences of Kőszegi and Rabin (2006, 2007) and

the (cumulative) prospect theory of Kahneman and Tversky (1979, 1992). In this section we

compare the portfolio choice implications of GDA and these alternative preferences.

4.1 Reference-dependent preferences

Kőszegi and Rabin (2006, 2007) introduce a model of reference-dependent preferences in

which the agent is loss averse around a reference point that is determined endogenously by

the economic environment. Similar to Kőszegi and Rabin (2007), we let utility be defined

over the terminal wealth level, or, without loss of generality, over the portfolio return:

Ũ (F | G) =

∫ ∫
ũ (RW | Rz) dG (Rz) dF (RW ) = EF

[
EG [ũ (RW | Rz)]

]
, (29)

where RW is the return on the portfolio with probability distribution F and Rz is a stochastic

reference point with probability distribution G. Let ũ (RW | Rz) be defined as

ũ (RW | Rz) = (1− ϑ)U (RW ) + ϑL (U (RW )− U (Rz)) (30)

with

L (x) = x+ (λ− 1)xI (x ≤ 0) =


x x > 0

λx x ≤ 0

, (31)

where U (·) is a standard utility function and L (·) is the “gain-loss utility”. The functional

form of L (·) captures Kahneman and Tversky’s (1979) loss aversion with λ as the loss-

aversion parameter. The parameter ϑ ∈ [0, 1] can be interpreted as the relative weight
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attached to the gain-loss utility. Using the first expression for the gain-loss utility in (31),

Ũ (F | G) = EF [U (RW )]− ϑEG [U (Rz)]− ϑ (λ− 1)EF
[
EG [(U (Rz)− U (RW )) I (RW ≤ Rz)]

]
.

(32)

The reference point, Rz, can either be stochastic or be constant (taking a fixed value with

probability one). The reference point also can be either exogenous or endogenous (depending

on the portfolio weights). Considering a constant reference point is highly relevant to the

current paper.

When the reference point is constant and exogenous, the portfolio choice problem, i.e.,

choosing the portfolio weights to maximize Ũ (F | G), simplifies to

max
w

EF [U (RW )]− ϑ (λ− 1)︸ ︷︷ ︸
≡`KR

EF [(U (Rz)− U (RW )) I (RW ≤ Rz)] . (33)

Berkelaar, Kouwenberg, and Post (2004) refer to these preferences as the “kinked power

utility” when U (·) is the power utility, and use them to isolate the effect of loss aversion in

prospect theory. Comparing the above formula with (7), we can see that (33) is equivalent

to the GDA portfolio problem with disappointment-aversion parameter `KR, except that the

reference point is exogenously given in (33), while it is endogenously determined in the GDA

problem. Since the two problems are closely related, our results for the GDA problem also

provide an analytical solution to (33). The result in Proposition 1.1 holds if we replace the

endogenous (log) reference point lnκ + η with the exogenously given reference point lnRz.

We demonstrate in the Online Appendix that if the reference point is defined as Rz ≡ κRf

and we set ` = `KR, the two problems lead to almost identical optimal portfolios in our

benchmark calibration.

When the reference point is constant and endogenous, the portfolio choice problem be-

comes

max
w

EF [U (RW )]− ϑU (Rz)− `KREF [(U (Rz)− U (RW )) I (RW ≤ Rz)] . (34)
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We show in Appendix C that if U (·) is the power utility and the reference point is defined as

Rz ≡ κR, where R is the GDA certainty equivalent from (7), every GDA optimal portfolio

problem can be formulated as the problem in (34). To the best of our knowledge, this

connection between the two preference frameworks has not been pointed out previously.

The central idea of Kőszegi and Rabin (2006, 2007) is that the reference point is stochastic

and it is described by the probability distribution G. They assume that this distribution

represents the investor’s fully probabilistic rational expectations about the portfolio return,

i.e., G = F . In this case, the portfolio choice can be rewritten as (if ϑ 6= 1)

max
w

EF [U (RW )]− ϑ (λ− 1)

1− ϑ
EF
[
EF [(U (Rz)− U (RW )) I (RW ≤ Rz)]

]
. (35)

In the Online Appendix we solve this problem numerically and demonstrate that it leads to

nonparticipation in risky asset markets similar to the GDA preferences with κ = 1 and to

the kinked power-utility preferences in (33) with Rz = Rf . That is, return asymmetries in

these cases do not have a big impact on the optimal portfolio.

4.2 Cumulative prospect theory

Kahneman and Tversky (1979) introduced prospect theory (PT) and Tversky and Kahne-

man (1992) consider the modified (cumulative) version (CPT). Four building blocks of CPT

distinguish it from expected utility theory. These can be summarized as follows:

1. the CPT investor is more sensitive to losses than to gains of the same magnitude; this

is also known as loss aversion.

2. the CPT investor’s reference point for distinguishing gains from losses is exogenously

given.

3. the CPT investor’s utility function is concave over gains and convex over losses.
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4. the CPT investor uses transformed (or subjective) probabilities instead of objective

probabilities.

To isolate the effect of the first two items in the above list, Berkelaar, Kouwenberg, and

Post (2004) suggest the kinked power utility described in (33), which deviates from EU

by assuming that the investor is more sensitive to outcomes below an exogenously given

reference point. As we discussed in the previous section, this setup is very similar to GDA.

The only difference is that the reference point is exogenously given for the kinked power

utility, while it is endogenously determined for the GDA. We also demonstrated that they

lead to similar optimal portfolios, at least in our static portfolio choice problem. That is,

the effect of loss aversion only is similar to that of disappointment aversion.

However, CPT is a collection of deviations from EU theory that contains not only loss

aversion but also the convexity of the utility function over losses and the use of transformed

probabilities. With all these deviations, CPT does not nest EU as a special case, and it is

difficult to provide a direct analytical comparison between CPT and GDA. To compare their

implications, we numerically solve the portfolio choice problem of various CPT investors

when returns are generated from the normal-exponential model using our benchmark cal-

ibration. The Online Appendix contains the detailed assessment of the results, and we

summarize the key lessons here.

First, for certain parameterizations, when the degree of loss aversion is low enough, the

CPT portfolio problem does not have a finite optimal solution. He and Zhou (2011) refer to

this as the problem being “illposed” and provide a detailed analysis for the case with a single

risky asset in the portfolio. Our results indicate that the CPT portfolio choice problem also

may be illposed if there are multiple risky assets in the portfolio. Note that this issue does

not arise in the case of EU and GDA preferences.

Second, when the reference point is the initial wealth grown at the risk-free rate, which

is an important benchmark in the literature, the CPT portfolio problem has an inconvenient

implication: whenever there is a unique finite solution, the CPT investor’s optimal strategy
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is to invest all her wealth in the risk-free asset.14 This is discussed in detail by Ang, Bekaert,

and Liu (2005) and He and Zhou (2011) in the case with one risk-free and one risky asset.

Our numerical analysis in the Online Appendix suggests that this result extends to the case

of multiple risky assets.

Third, when the reference point is lower than the initial wealth grown at the risk-free

rate, CPT has similar portfolio choice implications as do GDA preferences with κ < 1 (which

also corresponds to a low reference point). A CPT investor increases the weight of bonds

relative to stocks in the optimal portfolio as her (1) degree of loss aversion increases and (2)

subjective probability distortion becomes more pronounced. This is similar to the effect of

increasing disappointment aversion on the GDA investor’s portfolio. It is not surprising that

loss aversion and disappointment aversion have the same effect based on the similarity of

kinked-power-utility and GDA preferences discussed previously. However, it is not a priori

evident that probability distortion also should have a similar effect. We demonstrate in the

Online Appendix that the mechanism through which the probability distortion component

of CPT works is different. Probability distortion works through the subjective mean and

variance of the return distributions, while loss aversion and disappointment aversion work

through return asymmetries.

Fourth, when the reference point is higher than the initial wealth grown at the risk-free

rate, CPT and GDA (with κ > 1, which also corresponds to a high reference point) have

different portfolio choice implications. This is not surprising given that when the reference

point is high, the CPT utility function is convex on most of the outcomes (as they are

considered losses), while the GDA utility is concave everywhere.

14For example, Ang, Bekaert, and Liu (2005) and Barberis and Huang (2008) consider a setup in which
the reference point is the initial wealth grown at the risk-free rate. Note that with the same reference point,
the kinked power utility from (33) also may lead to nonparticipation in risky asset markets, as well as GDA
preferences with κ = 1. However, the solution is either nonparticipation or no unique solution in case of CPT,
and for the other two preferences there are parameterizations with a unique solution and risky investment.
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5 Conclusion

We studied the joint impact of two types of asymmetries on portfolio choice: in asset re-

turns and in investor attitudes toward risk. We modeled asymmetric preferences using

generalized disappointment aversion, and we modeled asymmetric return distributions us-

ing a normal-exponential model. We have found that the two types of asymmetries jointly

yield qualitatively different optimal portfolios from those of the standard model, in which

these asymmetries are ignored. On the one hand, when asset returns are symmetric, all

investors hold the same risky portfolio. Consequently, when observing a particular asset

allocation, it is impossible to determine whether it was chosen by a disappointment-averse

or a disappointment-neutral investor. On the other hand, standard preferences imply that

return asymmetry only marginally affects the composition of optimal portfolios. However,

when both asymmetries are taken into account, the composition of the optimal portfolio

changes.

In our calibrated main example involving three assets (cash, bonds, and stocks), a

disappointment-averse investor with a reference point lower than the certainty equivalent

of the investment shifts from negatively skewed stocks toward bonds to avoid the occasional

large losses that negatively skew the stock returns. On the other hand, a disappointment-

averse investor with a reference point higher than the certainty equivalent prefers to hold

stocks in her optimal portfolio. We also have demonstrated that the portfolio choice of an

investor with a longer investment horizon is less affected by return asymmetries.

Return asymmetries only have a marginal effect on the portfolio choice of investors with

standard preferences. Expected utility investors achieve more than 99.9% of their overall

optimal excess certainty equivalent even if they ignore return asymmetries. However, cross-

sectional asset pricing studies suggest that systematic and idiosyncratic return asymmetries

are priced (e.g., Harvey and Siddique 2000; Dittmar 2002; Boyer, Mitton, and Vorkink 2010).

Our results suggest that preference asymmetries, and disappointment aversion in particular,

may help to reconcile the portfolio choice implications with the asset pricing evidence.
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Appendix

A Log Certainty Equivalent

Recall that rW = lnRW , η = ln (R), and U (X) = X1−γ

1−γ . We can accordingly rewrite

U (κR)− U (RW ) = U (κR)

(
1− U (RW )

U (κR)

)
= U (κR)

(
1−

(
RW

κR

)1−γ
)

= κ1−γU (R) (1− exp ((γ − 1) (lnκ+ η − rW ))) .

(A1)

Noting that ∀a,X ∈ R

(1− exp (aX)) I (X > 0) = 1− exp (aXI (X > 0)) = 1− exp (amax (X, 0)) , (A2)

Equation (A1) implies

E [(U (κR)− U (RW )) I (RW < κR)] = κ1−γU (R) (1− E [exp ((γ − 1) pW )]) , (A3)

where pW ≡ max (lnκ+ η − rW , 0) .

Substituting (A3) into (7) and solving for U (R), we arrive at

U (R) =
E [U (RW )]

θ + `κ1−γ (1− E [exp ((γ − 1) pW )])
,

lnR1−γ = lnE
[
R1−γ
W

]
− ln

(
θ + `κ1−γ (1− E [exp ((γ − 1) pW )])

)
.

(A4)

This finally leads to the first case in Equation (8). The second case in (8) directly derives

from the first case by taking the limit and applying l’Hôpital’s rule.
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B Proof of Proposition 1.1

To simplify notation, we drop the t subscript and use r instead of rt, and rW instead of rW,t.

Equation (8) defines an implicit function:

G (w, η) ≡ −η +
1

1− γ
lnE [exp ((1− γ) rW )]− 1

1− γ
ln
(
θ + `κ1−γ (1− E [exp ((γ − 1) pW )])

)
= 0 . (A5)

Implicit differentiation of (A5) implies that

∂η

∂w
= −G

′
1 (w, η)

G′2 (w, η)
, (A6)

where G′1 (G′2) is the partial derivative of G with respect to its first (second) argument. If

an optimal allocation policy exists, it satisfies the necessary condition ∂η
∂w

= 0, implying that

G′1 (w, η) = 0 . (A7)

From (A5),

G′1 (w, η) =
E [exp ((1− γ) rW ) (∂rW /∂w)]

E [exp ((1− γ) rW )]
− `κ1−γE [exp ((γ − 1) pW ) (∂pW /∂w)]

θ + `κ1−γ (1− E [exp ((γ − 1) pW )])
. (A8)

Equation (14) implies

∂rW
∂w

=

(
r − rf ι+

1

2
σ2

)
− Σw and

∂pW
∂w

= −∂rW
∂w

I (rW < lnκ+ η) , (A9)

which is substituted into (A8) to yield

G′1 (w, η) =
E [exp ((1− γ) rW ) r]

E [exp ((1− γ) rW )]
+

ν

1− ν
E [exp ((1− γ) rW ) rI (rW < lnκ+ η)]

E [exp ((1− γ) rW ) I (rW < lnκ+ η)]

+
1

1− ν

(
−rf ι+

1

2
σ2 − Σw

)
,

(A10)

where

ν ≡ `κ1−γ exp ((γ − 1) (lnκ+ η))E [exp ((1− γ) rW ) I (rW < lnκ+ η)]

θ + `κ1−γE [I (rW < lnκ+ η)]
. (A11)
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Define

M (u, v;x) ≡ E
[
exp

(
urW + v>r

)
I (rW < x)

]
. (A12)

Then (A10) can be rewritten as

G′1 (w, η) =
M
′
2 (1− γ, 0;∞)

M (1− γ, 0;∞)
+

ν

1− ν
M
′
2 (1− γ, 0; lnκ+ η)

M (1− γ, 0; lnκ+ η)
+

1

1− ν

(
−rf ι+

1

2
σ2 − Σw

)
,

(A13)

while the log certainty equivalent and ν can be rewritten as

η =
1

1− γ
lnM ((1− γ) , 0;∞)

− 1

1− γ
ln
(
θ + `κ1−γM (0, 0; lnκ+ η)− `κ1−γe−(1−γ)(lnκ+η)M (1− γ, 0; lnκ+ η)

)
,

(A14)

and

ν =
`κ1−γe−(1−γ)(lnκ+η)M (1− γ, 0; lnκ+ η)

θ + `κ1−γM (0, 0; lnκ+ η)
. (A15)

Finding an analytical formula for M (u, v;x) and M ′
2 (u, v;x) allows us to calculate all the

quantities of interest from (A13), (A14), and (A15). The Online Appendix contains the

derivation of the formulas for these quantities in a more general case, in which the investment

horizon is H periods and the H-period log return on risky assets between dates t and t+H

is defined as

rt,t+H ≡
H∑
h=1

rt+h . (A16)

In Proposition 1.1, we consider the case in which H = 1 (and rt,t+1 is simply referred to as

r). Using the results in the Online Appendix for H = 1,

M (1− γ, 0; lnκ+ η) = exp

(
(1− γ) (µW − σW δW ) +

(1− γ)2 σ2
W

(
1− δ2

W

)
2

)
Φ (c0) + C

c2
, (A17)

where Φ (·) is the cumulative distribution function of the standard normal distribution, and

C ≡


exp

(
c22+2c0c1c2

2c21

)
Φ
(
− c2+c0c1

c1

)
if c1 > 0

− exp
(
c22+2c0c1c2

2c21

)
Φ
(
c2+c0c1

c1

)
if c1 < 0

, (A18)
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and

c0 ≡
lnκ+ η − µW + σW δW − (1− γ)σ2

W (1− δ2
W )

σW
√

1− δ2
W

c1 ≡
−δW√
1− δ2

W

c2 ≡ 1− (1− γ)σW δW .

(A19)

Note also that

M (1− γ, 0;∞) = exp

(
(1− γ) (µW − σW δW ) +

(1− γ)2 σ2
W

(
1− δ2

W

)
2

)
1

c2
. (A20)

It also is shown in the Online Appendix that

M ′2 (1− γ, 0; lnκ+ η)

M (1− γ, 0; lnκ+ η)
= µ+

(
1− γ +

ξBΣ,0
Φ (c0) + C

)
Σw+

(
(1− γ)2 σ2

W δ
2
W

c2
+

ξBa,0
Φ (c0) + C

)
(σ ◦ δ) ,

(A21)

with

ξBa,0 = exp

(
c2

2 + 2c0c1c2

2c2
1

)
Φ

(
−c2 + c0c1

c1

)(
−c2 −

c2 + c0c1

c2
1

)
+ exp

(
c2

2 + 2c0c1c2

2c2
1

)
φ

(
−c2 + c0c1

c1

)(
1

c1

+ c1

)
− c1φ (c0)

ξBΣ,0 = exp

(
c2

2 + 2c0c1c2

2c2
1

)
Φ

(
−c2 + c0c1

c1

)
c2

σW δW

+ exp

(
c2

2 + 2c0c1c2

2c2
1

)
φ

(
−c2 + c0c1

c1

)
1

σW
√

1− δ2
W

− φ (c0)

σW
√

1− δ2
W

,

(A22)

where φ (·) is the probability density function of the standard normal distribution. Also,

M ′2 (1− γ, 0;∞)

M (1− γ, 0;∞)
= µ+ (1− γ) Σw +

(1− γ)2 σ2
W δ

2
W

c2
(σ ◦ δ) . (A23)

Substituting (A21) and (A23) into (A13), setting it to zero, and solving for w, we arrive at

the optimal portfolio rule:

w =
1

γ̃

(
Σ−1

(
µ− rf ι+

1

2
σ2

)
+ χ̃Σ−1 (σ ◦ δ)

)
, (A24)
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with

γ̃ = γ − ν
ξBΣ,0

Φ (c0) + C

χ̃ =
(1− γ)2 σ2

W δ
2
W

1− (1− γ)σW δW
+ ν

ξBa,0
Φ (c0) + C

,

(A25)

which corresponds to (17) in the paper. Note that ` = 0 implies ν = 0, which easily can be

seen from (A15).

C Equivalence of the GDA and the KR Problem

When the reference point is constant and endogenously determined, Ũ (F | G) from (32) can

be written as

Ũ (F | G) = EF [U (RW )]− ϑU (Rz)− ϑ (λ− 1)︸ ︷︷ ︸
≡`KR

EF [(U (Rz)− U (RW )) I (RW ≤ Rz)] .

(A26)

Assume that the reference point is Rz = κR, where R is the GDA certainty equivalent

from (7). Then using the definition in (7)

Ũ (F | G) = EF [U (RW )]− ϑU (κR)− `KREF [(U (κR)− U (RW )) I (RW ≤ κR)]

= θU (R)− ϑU (κR)

=
(
θ − ϑκ1−γ)U (R) ,

(A27)

where the last equality uses the assumption that U (·) has the power-utility form. Maximizing

Ũ (F | G) is the same as maximizing the GDA certainty equivalent, R, if θ−ϑκ1−γ > 0. That

is, for every GDA problem described by the set of preference parameters {γ, `, κ}, we can

find a corresponding Kőszegi and Rabin (2006, 2007) problem with parameters {γ, ϑ, λ,Rz}

such that they lead to the same optimization problem. We need to pick the parameters so

that Rz = κR, ϑ (λ− 1) = ` and the inequality θ − ϑκ1−γ > 0 is satisfied.
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Table 1. Parameter estimates

Panel A. Moment and parameter estimates

Sample GMM
Est. 95% CI Est. SE

rf (%) 0.37
µB − rf (%) 0.13 {0.00, 0.28} 0.13 (0.08)
µS − rf (%) 0.48 {0.17, 0.79} 0.48 (0.17)
σB (%) 2.11 {1.97, 2.25} 2.11 (0.12)
σS (%) 4.34 {4.01, 4.70} 4.34 (0.24)
corrBS 0.10 {0.00, 0.19} 0.10 (0.06)
skewB 0.20 {–0.11, 0.50} 0.02 (0.06)
skewS –0.82 {–1.32, –0.33} –0.81 (0.38)
coskewBS –0.07 {–0.27, 0.13} –0.07 (0.02)
coskewSB 0.18 {–0.07, 0.45} 0.23 (0.13)
xkurtB 1.48 {0.82, 2.15} 0.01i

xkurtS 2.92 {0.60, 5.49} 1.80i

ψ 0.39 (0.16)
δB 0.21 (0.08)
δS –0.74 (0.12)

Panel B. Composition of the normalized funds

Bond Stock

w̄MV (%) 48.4 51.6
w̄AV (%) 332.5 –432.5

Panel A presents parameter and moment estimates for the calibration of the normal-exponential model

described in (10). The data used for the calibration are monthly log returns on three assets: 30-day Treasury

bills (f), the 10-year government bond index (B), and the value-weighted index of the CRSP stocks (S). The

period used is from July 1952 to December 2014. The first two columns present sample moment estimates

together with their bootstrapped 95% confidence intervals. The last two columns show the results of the

GMM estimation. The GMM estimation is overidentified and fits the two means (µ), two volatilities (σ),

correlation (corr), two skewnesses (skew), and two coskewnesses (coskew). Values with superscript i are not

estimated but are implied by the fitted distribution. Panel B shows the composition of the mean-variance

fund (w̄MV) and asymmetry-variance fund (w̄AV) calculated using (18) and then normalized using (21).
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Table 2. Risk attitudes and optimal portfolios

κ 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04

Panel A. GDA investor (γ = 2 and ` = 2)

Effective risk aversion, γ̃ 6.2 8.1 11.8 23.0 21.1 11.0 7.6 5.9
Implicit asymmetry aversion, χ̃ (×100) 4.88 4.98 5.07 5.15 –5.73 –5.03 –4.41 –3.85

Disappointment threshold, lnκ+ η (%) –3.52 –2.52 –1.55 –0.58 1.45 2.51 3.55 4.57
Disappointment probability, πW (%) 2.0 2.2 2.5 2.8 88.6 90.1 91.4 92.6

Cash weight, wf (%) 12.3 32.4 53.7 76.2 72.0 46.4 22.9 1.1
Bond weight, wB (%) 54.6 42.3 29.1 15.0 9.3 18.8 28.3 37.7
Stock weight, wS (%) 33.1 25.3 17.2 8.8 18.7 34.8 48.8 61.2

MV fund weight, αMV (%) 90.9 70.1 48.0 24.7 26.9 51.7 74.7 96.2
AV fund weight, αAV (%) 3.19 2.51 1.75 0.92 –1.11 –1.87 –2.37 –2.67

Panel B. Comparable EU investor

Effective risk aversion, γ̃ 6.2 8.1 11.8 23.0 21.1 11.0 7.6 5.9
Implicit asymmetry aversion, χ̃ (×103) 0.47 0.51 0.56 0.60 0.60 0.55 0.50 0.46

Disappointment probability, πW (%) 4.0 4.4 4.8 5.2 94.0 94.6 95.1 95.6

Cash weight, wf (%) 9.4 30.2 52.2 75.4 73.2 48.5 25.5 4.1
Bond weight, wB (%) 45.0 34.8 23.9 12.3 13.4 25.7 37.0 47.6
Stock weight, wS (%) 45.6 35.1 24.0 12.3 13.4 25.8 37.4 48.3

MV fund weight, αMV (%) 90.9 70.1 48.0 24.7 26.9 51.7 74.7 96.2
AV fund weight, αAV (%) 0.31 0.26 0.19 0.11 0.12 0.20 0.27 0.32

The table presents detailed information about the optimal portfolio choice of specific investors. For the

GDA investors in panel A, γ = 2 and ` = 2 are used, and κ varies across columns. The choice of the DA

investor (κ = 1) is not presented as the investor chooses not to participate in risky asset markets when

` = 2. The investment horizon is one month. The distribution of asset returns is calibrated using the values

reported in Table 1. The log certainty equivalent, expected shortfall, and upside potential are presented

in monthly percentage values. Panel B presents values for a comparable EU investor. The effective risk

aversion, γ̃, of the investor is exactly the same as that of the GDA investor in the same column, but the

implicit asymmetry aversion is the one implied by EU preferences. The disappointment probabilities (πW )

in panel B are calculated using the corresponding threshold (lnκ+ η) reported in panel A.
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Table 3. Cost of ignoring skewness

κ 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04

Panel A. GDA investor (γ = 2 and ` = 2)

Relative cost,
R′−Rf
R−Rf

(%) 83.27 83.17 83.24 83.47 94.15 95.12 95.98 96.73

Absolute cost, R−R′ (×103) 4.201 3.303 2.285 1.175 0.649 1.000 1.144 1.150

Panel B. Comparable EU investor

Relative cost,
R′−Rf
R−Rf

(%) 99.93 99.91 99.90 99.88 99.88 99.90 99.92 99.93

Absolute cost, R−R′ (×103) 0.015 0.014 0.011 0.007 0.007 0.012 0.014 0.016

The table presents measures for the cost of ignoring return asymmetries. The preference parameters used are

the same as in the corresponding columns of Table 2. The investment horizon is one month for all investors

and the distribution of asset returns is calibrated using the parameters from Table 1. The cost in absolute

terms is measured as (R−R′), and in relative terms it is measured as (R′ −Rf ) / (R−Rf ), R being

the annualized certainty equivalent of the optimal portfolio. An investor who ignores return asymmetry

and chooses the optimal portfolio as if log asset returns were normally distributed with the same mean

and variance-covariance matrix as the true distribution, chooses the suboptimal allocation w′. R′ is the

annualized certainty equivalent of the suboptimal allocation under the true distribution.
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Table 4. Asset allocations recommended by financial advisors

Panel A. Assumed asset returns

Mean SD Skew Correlation with w̄MV w̄AV

bonds stocks

Cash 0.05%
Bonds 0.18% 2.9% 0.01 1.00 0.23 0.27 9.2
Stocks 0.75% 6.0% –0.81 0.23 1.00 0.73 –10.2

Panel B. Portfolio recommendations

Percent of portfolio (%)
Cash Bonds Stocks

wC wB wS
wB
wS

(×100) αMV(%) αAV

αMV (×100) γ̃ χ̃(×100)

Advisor A
Conservative 50 30 20 150 52 3.4 6.2 8.1
Moderate 20 40 40 100 82 2.4 3.9 5.7
Aggressive 5 30 65 46 95 0.5 3.4 1.2

Advisor B
Conservative 20 35 45 78 81 1.8 3.9 4.2
Moderate 5 40 55 73 97 1.6 3.3 3.8
Aggressive 5 20 75 27 94 –0.6 3.4 –1.5

Advisor C
Conservative 50 30 20 150 52 3.4 6.2 8.1
Moderate 10 40 50 80 92 1.8 3.5 4.4
Aggressive 0 0 100 0 97 –2.9 3.3 –7.0

Advisor D
Conservative 20 40 40 100 82 2.4 3.9 5.7
Moderate 10 30 60 50 91 0.7 3.5 1.6
Aggressive 0 20 80 25 99 –0.7 3.2 –1.7

Panel A presents assumptions regarding the distribution of monthly asset returns based on Table 2 (p. 185)

of Canner, Mankiw, and Weil (1997). Note that Canner, Mankiw, and Weil (1997) do not report asset

skewness, so we use values from our calibration. Panel B presents the recommendations of four financial

advisors. The first four columns are taken from Table 1 (p. 183) of Canner, Mankiw, and Weil (1997). The

last four columns present the weight in the mean-variance fund w̄MV (αMV), the relative weight in the

asymmetry-variance fund w̄AV (αAV/αMV), and the corresponding effective risk aversion (γ̃) and implicit

asymmetry aversion (χ̃) for each portfolio.
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Figure 1. Conditional bond–stock correlations and expected stock shortfalls

Figure A plots the probability density function (pdf) of the log stock return distribution. Figure B plots

the expected stock return shortfall defined as E [rS | rS < QS (q)] and expressed in monthly percentages

(%), where QS (q) denotes the qth quantile of the stock return distribution. Figure C plots conditional

bond–stock correlations defined as Corr (rS , rB |rS < QS (q)) if q ≤ 0.5 and Corr (rS , rB |rS > QS (q)) if

q > 0.5. All figures display values estimated from the sample (Sample), values simulated from a normal

distribution fitted to the data (Normal), and values simulated using model (10) fitted to the data by GMM

(Normal-Exponential).
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Figure 2. Optimal portfolios for different investors

The figure presents the relative weights in the mean-variance fund (αMV, on the bottom axis) and the

asymmetry-variance fund (αAV/αMV, on the left axis) for optimal portfolios of investors with different

preferences. The corresponding effective risk aversion (γ̃, on the top axis) and implicit asymmetry aversion

(χ̃, on the right axis) are also presented. All curves start at the same point corresponding to the investor

for whom γ = 2 and ` = 0. The line corresponding to the EU investor shows the effect of increasing γ from

2 to 30 (moving left along the horizontal axis). The rest of the curves correspond to disappointment-averse

investors with different κ values (see the legend) and show the effect of increasing ` from 0 to 3 (moving

left along the horizontal axis), while keeping γ fixed at 2. The investment horizon is one month, and the

distribution parameters for the asset returns are given in Table 1.
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Figure 3. Optimal portfolios for different levels of stock skewness

The figure presents optimal portfolio weights in stocks and bonds for an EU investor (γ = 6) and two GDA

investors (one with γ = 2, ` = 2, and κ = 0.96, and the other with γ = 2, ` = 2, and κ = 1.04). The

investment horizon is one month and the distribution parameters, except for δS , are given in Table 1. The

parameter δS is varied along the horizontal axis leading to different stock skewness values. The vertical line

corresponds to our benchmark calibration with a stock skewness of –0.81.
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Figure 4. Effect of increasing the investment horizon

Figure A illustrates how the optimal portfolio changes with the investment horizon if returns are IID. The

distribution parameters for the one-period returns are given in Table 1, while the H-period parameters

are calculated according to (25). The figure shows the relative weight in the asymmetry-variance fund

(αAV/αMV) for the EU (` = 0) investor and two GDA investors (` = 2 for both and κ < 1 for one and

κ > 1 for the other). The preference parameters are chosen so that the effective risk aversion is γ̃ = 5 for

all investors and horizons. Figures B to D compare the IID assumption with the case in which the return-

generating model is fit to returns aggregated over H = 1, ..., 12 months. Figure B shows the stock’s skewness

when returns are aggregated over H months (round markers) and in the IID case (solid line). Figures C and

D show the optimal stock weight and bond/stock allocation ratio, respectively, for the EU investor and two

GDA investors (one with κ < 1 and the other with κ > 1) in the IID case, and for the same GDA investors

with the estimated H-period returns.
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