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Abstract

The relationship between conditional volatility and expected stock market returns, the so-
called risk-return trade-off, has been studied at high- and low-frequency. We propose an asset
pricing model with generalized disappointment aversion preferences and short- and long-run
volatility risks that captures several stylized facts associated with the risk-return trade-off at
short and long horizons. Writing the model in Bonomo et al. (2011) at the daily frequency, we
aim at reproducing the moments of the variance premium and realized volatility, the long-run
predictability of cumulative returns by the past cumulative variance, the short-run predictability
of returns by the variance premium, as well as the daily autocorrelation patterns at many lags
of the V IX and of the variance premium, and the daily cross-correlations of these two measures
with leads and lags of daily returns. By keeping the same calibration as in this previous paper,
we ensure that the model is capturing the first and second moments of the equity premium
and the risk-free rate, and the predictability of returns by the dividend ratio. Overall adding
generalized disappointment aversion to the Kreps-Porteus specification improves the fit for both
the short-run and the long-run risk-return trade-offs.
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1 Introduction

To study the relationship between conditional volatility and expected stock market returns re-

searchers have mainly run linear regressions. The outcome after more than two decades of empirical

studies is rather disappointing. Some find a positive relation, others a negative one. In many stud-

ies, there is no significant trade-off1. Several recent contributions have revived the debate. Bandi

and Perron (2008) find that the dependence is statistically mild at short horizons, which explains

the contradicting results in the literature, but increases with the horizon and is strong in the long

run (between 6 and 10 years). A recent trend in the literature has also put forward the variance

risk premium (VRP) as a strong predictor of stock returns in the short run (see in particular Boller-

slev et al. (2009)). Bollerslev et al. (2006) study the relationship between volatility and past and

future returns in high-frequency equity market data. They find an asymmetric pattern in the cross-

correlations between absolute high-frequency returns and current and past high-frequency returns.

Correlations between absolute returns and past returns are significantly negative for several days,

while the reverse cross-correlations between absolute returns and future returns are negligible.

We propose an equilibrium consumption-based asset pricing model with generalized disappoint-

ment aversion preferences and volatility risk to rationalize these recently put-forward stylized facts.

We extend the model in Bonomo et al. (2011) in two ways. First, since we want to address short-run

volatility-return relationship, we write the model at the daily frequency. Second, we add a short-run

volatility risk to the long-run volatility risk in Bonomo et al. (2011). Our main contribution is to

reproduce relations between returns and volatility at short and long horizons with an equilibrium

model calibrated at a high-frequency daily level. We can then solve the model daily and construct

realized quantities at lower frequencies. Thanks to Markov-switching fundamentals, a key advan-

tage of the model proposed by Bonomo et al. (2011) is to find analytical formulas for moments

of asset pricing quantities such as payoff ratios and returns, and for coefficients of predictability

regressions at any horizon. In this framework we are able to produce analytical results at high

frequency as in Bollerslev et al. (2006) together with the long-run regressions of Bandi and Perron

(2008) in the same model. For generating empirical stylized facts, we keep the same calibration

1In a survey about measuring and modeling variation in the risk-return trade-off, Lettau and Ludvigson (2010)
attribute in large part the disagreement in the empirical literature on this relation to the limited amount of information
generally used to model the conditional mean and conditional volatility of excess stock market returns. Rossi and
Timmermann (2010) argue that there is no theoretical reason for assuming a linear relationship between the expected
returns and the conditional volatility. They found support for nonlinear patterns in the risk-return trade-off.



as in Bonomo et al. (2011) to make sure that the model produces first and second moments of

price-dividend ratios and asset returns as well as return predictability patterns in line with the

data.

At the high-frequency level, we assess the capacity of the model to reproduce the autocorrelation

of daily returns, squared daily returns, and cross-correlations of daily returns and squared returns at

various leads and lags. We also build measures of monthly realized variance (RV) by summing daily

squared returns and compute moments of realized volatility. The variance premium is obtained by

first taking the expectation under the risk-neutral measure of this realized volatility and subtracting

the latter from the obtained risk-neutral volatility. The predictability of returns by the variance

premium is then established for horizons of one to twelve months. At longer horizons, we reproduce

the predictability regressions of Bandi and Perron (2008) by aggregating returns and volatilities

over periods of one to ten years.

With generalized disappointment aversion preferences, the stochastic discount factor (SDF) has

a kink at a disappointing threshold equal to a given fraction of the certainty equivalent of lifetime

future utility. In regular disappointment aversion preferences, the threshold is equal to the certainty

equivalent. In the model we propose, expected consumption growth is constant. Therefore, the only

long-run risk is an economic uncertainty risk captured by the volatility of consumption. To capture

a richer short-run dynamics in volatility and the predictability of returns by the variance premium

we add a short-lived volatility component to the persistent component that was used in Bonomo

et al. (2011). Shocks in the high- and low-persistence components of consumption growth volatility

affect the volatility of the SDF. A persistent increase in consumption growth volatility increases the

volatility of future utility. A more volatile future utility increases the probability of disappointing

outcomes, making the SDF more volatile. In our model dividends share the consumption volatility

process, so an increase in volatility will increase negative covariance between the SDF and the

equity return, increasing both the equity premium and the stock return volatility. This will ensure

that the long-horizon regressions of aggregated returns over aggregated volatilities will produce R2

that increase with the horizon.

The variance risk premium is measured as the difference between the squared VIX index (V IX2)

and expected realized variance. In the short-run, the low-persistence component of consumption

growth volatility will add volatility to the SDF. This additional volatility will impact relatively more
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the option-implied variance and the volatility of the variance premium will increase. So, we expect

a stronger relationship between the variance premium and the future returns in the short-run than

in the long-run. Indeed, for the short-run predictability of returns by the variance premium, we

obtain with the model the pattern exhibited by the data (a peak around 2 to 3 months and a slow

decline up to 12 months).

In terms of moments of the V IX2, RV and V RP , we match the mean of the V IX2 but tend to

overestimate the mean of the realized volatility, therefore underestimating the mean of the variance

premium. For the second moments, we overestimate the standard deviation of both V IX2 and RV

and underestimate the standard deviation of the variance premium. For the short-run risk-return

trade-off stylized facts, we are able to reproduce the daily autocorrelation patterns in V IX2 and

V RP , up to 90 lags, that is the more persistent autocorrelation for the first measure and the faster

decay for the variance premium. For the cross-correlations of V IX2 and V RP with 22 leads and

lags of daily returns, we observe a negative pattern in the lags and a close to zero pattern in the

leads for both measures. Our model produces negative cross-correlations in the lags (interpreted in

the literature as a leverage effect), albeit weaker than in the data, but overestimates the positive

cross-correlations in the leads. Therefore, our model creates a stronger volatility feedback effect

than observed. This short-run predictability of returns by the variance measures remains in the

long-run since the model reproduces the increasing explanatory power at longer horizons found by

Bandi and Perron (2008).

Given that all moments and regression coefficients are obtained analytically we are able to

conduct a thorough comparison between our GDA specification and two important sub-cases. The

first one (called DA0) will be the simplest specification among disappointment averse preferences.

The threshold is set at the certainty equivalent and we do not allow any curvature in the stochastic

discount factor except for the disappointment aversion kink. Therefore, without disappointment,

the SDF will be constant and equal to the constant time discount parameter. The second one

(denoted by KP) is of course the Kreps-Porteus preferences which are used most often in long-

run risk models as in the original Bansal and Yaron (2004). For the three sets of preferences, we

compute all asset pricing moments, predictability regression statistics, and high-frequency dynamics

autocorrelations and cross-correlations. In addition, we report graphs that exhibit the sensitivity of

all statistics to variations in the key persistence values of the two components of consumption growth
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volatility. This analysis of the interplay between the persistence of the two components produces

very interesting patterns in some of the statistics, that in all likelihood will be hard to detect in an

estimation exercise. The analytical solutions are very useful to measure the robustness of model

implications. In several dimensions, both DA0 and KP come short of matching our benchmark

specification in reproducing the moment and predictability statistics. For reproducing asset returns

moments and predictability of returns by the dividend-price ratio, pure disappointment aversion

as captured by DA0 plays the most important role, as shown in Bonomo et al. (2011). However,

for the risk-return trade-off statistics, short-run risk aversion appears to be important. Therefore,

GDA preferences, which incorporate both disappointment aversion and short-run risk aversion are

better able to reproduce the complete set of stylized facts. For KP preferences, we already pointed

out in Bonomo et al. (2011) its inability to capture the predictability of excess returns by the

price-dividend ratio, as well as its counterfactual predictability of consumption growth. For risk-

return trade-off statistics, KP preferences match poorly the realized variance, V IX2 and variance

premium moments, but reproduce somehow the patterns for the short-run predictability of excess

returns by the variance premium, the long-run risk-return trade-off and the daily autocorrelations

and cross-correlations. However the magnitudes of the statistics are not in line with the data.

Other recent papers have addressed some of these stylized facts with equilibrium models. Boller-

slev et al. (2009) and Drechsler and Yaron (2011) provide a rationalization of the return predictabil-

ity by the variance premium based on extensions of the Bansal and Yaron (2004) long-run risk

model. Both models add in different ways a time-varying volatility of volatility to the initial model

where it was constant. A serious limitation of both models is that the model-implied measure of

the variance premium is not based on an accumulation of daily quantities as in the data but on

monthly conditional measures. Moreover, they do not consider the long-run risk-return trade-off.

Drechsler (2013) builds an equilibrium model with ambiguity aversion to capture properties

of index option prices, equity returns, variance, and the risk-free rate2. Investors who are afraid

about model uncertainty are ready to pay a large premium for index options because they hedge

again potential model misspecifications, most notably the presence of jump shocks to cash flow

growth and volatility. Time variation in uncertainty generates variance premium fluctuations,

helping to explain their power to predict stock returns. In our model, only shocks to consumption

2Schreindorfer (2014) aims at explaining the same stylized facts with the Bonomo et al. (2011) GDA model and
a heteroscedastic randow walk for consumption with the multifractal process of Calvet and Fisher (2007).
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volatility matter and time variation of the variance premium comes from the stochastic nature of

the disappointment magnitude as explained before.

Another structural approach is proposed by Bollerslev and Zhou (2005). They provide a theoret-

ical framework for assessing the empirical links between returns and realized volatilities. They show

that the sign of the correlation between contemporaneous return and realized volatility depends

importantly on the underlying structural parameters that enter nonlinearly in the coefficient.

Several papers have used Markov chains to model consumption growth volatility. Earlier papers

include Cecchetti et al. (1990), Bonomo and Garcia (1994) and Bonomo and Garcia (1996). More

recently, Calvet and Fisher (2007) have modeled consumption volatility at high and low frequencies

with a multi-fractal Markov-witching process.

The rest of the paper is organized as follows. Section 2 sets up the model for both preferences

and dynamics of fundamentals and provides the asset pricing solution. In Section 3, we detail the

various measures used as stylized facts for the risk-return trade-off and provide the model-based

analytical formulas for assessing the trade-off. Section 4 reviews the empirical stylized facts for

these various measures over the period 1990-2012 for facts involving the variance risk premium and

1930-2012 for the long-run risk-returns trade-off. We also compute the short-run measures over the

period 1990-2007 to account for the potential effect of the financial crisis on these quantities. The

calibration and the assessment of the model along the various measures of the risk-return trade-off

are reported in Section 5. Section 6 concludes. An online appendix provides the details of the

analytical derivations for the asset pricing moments and the risk-return trade-off measures.

2 Model Setup, Assumptions and Asset Pricing Solution

We assume that there are 1/∆ trading periods in a month, and that month t contains the periods

t− 1 + j∆, j = 1, 2, . . . , 1/∆. For example, ∆ = 1/22 for daily periods and ∆ = 1/ (78× 22) for 5-

min interval periods. We refer to the month as the frequency 1 and to the period as the frequency

∆. So defined, the frequency h refers to h months or equivalently h/∆ periods. For example,

the frequency 12 corresponds to yearly. We assume that the decision interval of economic agents

corresponds to the frequency ∆ so that dynamics of preferences, endowments and other exogenous

state variables are given at the frequency ∆.
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2.1 Equilibrium Consumption and Dividends Growths Dynamics

We assume that equilibrium consumption and dividends growths are unpredictable, at least at the

frequency ∆, and that their conditional variance as well as their conditional correlation change

according to a Markov variable st which takes N values, st ∈ {1, 2, . . . , N}, when N states of

nature are assumed for the economy. The process st evolves according to a transition probability

matrix P defined as:

P> = [pij ]1≤i,j≤N and pij = Prob (st+∆ = j | st = i) . (1)

Let ζt = est , where ej is the N × 1 vector with all components equal to zero but the jth

component is equal to one. Therefore, the dynamics of consumption and dividends are given by:

gc,t+∆ = ln

(
Ct+∆

Ct

)
= µx + σtεc,t+∆

gd,t+∆ = ln

(
Dt+∆

Dt

)
= µx + νdσtεd,t+∆

(2)

where σ2
t = ω>c ζt, and where

 εc,t+∆

εd,t+∆

 | {εc,j∆, εd,j∆, j ≤ t

∆
; ζk∆, k ∈ Z

}
∼ N


 0

0

 ,

 1 ρt

ρt 1


 , (3)

with

ρt =
1− exp

(
−βρ0 − βρσ lnσ2

t

)
1 + exp

(
−βρ0 − βρσ lnσ2

t

) = ρ>ζt. (4)

The scalar µx is the expected growth of aggregate consumption, which is assumed equal to that of

aggregate dividends. The two vectors ωc and ρ contain state values of the volatility of consumption

growth and of the correlation between consumption growth and dividend growth, respectively.

The ith element of a vector refers to the value in state st = i. Equation (4) shows that the

conditional correlation between consumption and dividends growths depends on the state of the

economy as determined by the volatility of aggregate consumption. In particular if βρσ = 0, then

consumption and dividends growth correlation is constant; if βρσ > 0 this correlation increases with

macroeconomic uncertainty.
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We assume that the log conditional variance of aggregate consumption growth is given by

lnσ2
t = az + b1zz1,t + b2zz2,t (5)

where z1,t and z2,t are two independent two-state Markov chains that can take values 0 and 1, cor-

responding to a low (L) and a high (H) states. The chain zi,t has the persistence φiz, a nonnegative

skewness and the kurtosis kiz. Following Bonomo et al. (2011) its transition matrix Piz may be

written

P>iz =

 piz,LL 1− piz,LL

1− piz,HH piz,HH

 with conditional state probabilities given by

piz,LL =
1 + φiz

2
+

1− φiz
2

√
kiz − 1

kiz + 3
and piz,HH =

1 + φiz
2

− 1− φiz
2

√
kiz − 1

kiz + 3
.

(6)

The kurtosis of the two-state Markov chain zi,t fully characterizes its stationary distribution, for

which the unconditional state probabilities are given by

πiz,L = P (zi,t = 0) =
1− piz,HH

2− piz,LL − piz,HH
=

1

2
+

1

2

√
kiz − 1

kiz + 3

πiz,H = P (zi,t = 1) =
1− piz,LL

2− piz,LL − piz,HH
=

1

2
− 1

2

√
kiz − 1

kiz + 3
,

(7)

and the skewness is given by

siz =
πiz,L − πiz,H√
πiz,Lπiz,H

=
√
kiz − 1. (8)

The combination of the two states of z1,t and the two states of z2,t leads to four distinct states for

the economy: LL ≡ 1, LH ≡ 2, HL ≡ 3 and HH ≡ 4. By the independence of the chains z1,t and

z2,t, the transition probability matrix associated with the four states of the economy also derives

easily as P = P1z ⊗ P2z. The state values of the conditional variance of aggregate consumption

growth are given by ωc =

(
exp (az) exp (az + b2z) exp (az + b1z) exp (az + b1z + b2z)

)>
.

The logarithm of conditional variance lnσ2
t has the mean µσ, the volatility σσ and the skewness

sσ that we want to match with the coefficients az, b1,z and b2,z in equation (5). We also assume that

the first component z1,t has a zero skewness (s1z = 0) which for a two-state Markov chain is also

equivalent to a unitary kurtosis (k1z = 1) and constant conditional volatility (homoscedasticity).
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Given φ1z, φ2z and κ2z, we solve for az, b1,z and b2,z to match the mean µσ, the volatility σσ and

the skewness sσ of lnσ2
t . We find that

b1z =
σσ√

π1z,1π1z,2

(
1−

(
sσ
s2z

)2/3
)1/2

and b2z =
σσ√

π2z,1π2z,2

(
sσ
s2z

)1/3

az = µσ − b1zπ1z,2 − b2zπ2z,2.

(9)

Equation (9) implies that sσ < s2z, or equivalently κ2z > 1 + s2
σ. Later in our calibration analysis,

we assume that the first component is very persistent, with φ
1/∆
1z close to one, and that the second

component is not persistent, with φ
1/∆
2z typically less than 0.9.

Several papers including Alizadeh et al. (2002), Barndorff-Nielsen and Shephard (2001), Chernov

et al. (2003), and Meddahi (2001) highlighted the importance of having two factors driving the

volatility process for models of daily returns. Typically, one factor will be very persistent in order

to capture persistence in volatility while the second one will be less persistent but very volatile.

The second factor is a way to capture fat tails in returns that a one-factor model with Gaussian

errors will not capture; see Meddahi (2001) for more details. In our model, the two independent

two-state Markov chains will play the role of these two factors, one being very persistent at the

daily level and one being less persistent but more volatile with a large kurtosis.

2.2 Preferences

The representative investor has generalized disappointment aversion (GDA) preferences of Rout-

ledge and Zin (2010). Following Epstein and Zin (1989), such an investor derives utility from

consumption, recursively as follows:

Vt =

{
(1− δ)C

1− 1
ψ

t + δ [Rt (Vt+∆)]
1− 1

ψ

} 1

1− 1
ψ if ψ 6= 1

= C1−δ
t [Rt (Vt+∆)]δ if ψ = 1.

(10)

The current period lifetime utility Vt is a combination of current consumption Ct, and Rt (Vt+∆),

a certainty equivalent of next period lifetime utility. With GDA preferences the risk-adjustment
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function R (·) is implicity defined by:

R1−γ − 1

1− γ
=

∫ ∞
−∞

V 1−γ − 1

1− γ
dF (V )− `

∫ θR

−∞

(
(θR)1−γ − 1

1− γ
− V 1−γ − 1

1− γ

)
dF (V ) , (11)

where ` ≥ 0 and 0 < θ ≤ 1. When ` is equal to zero, R becomes the Kreps and Porteus (1978)

preferences, while Vt represents Epstein and Zin (1989) recursive utility. When ` > 0, outcomes

lower than θR receive an extra weight `, decreasing the certainty equivalent. Thus, the parameter

` is interpreted as a measure of disappointment aversion, while the parameter θ is the percentage

of the certainty equivalent R such that outcomes below it are considered disappointing3. Equation

(11) makes clear that the probabilities to compute the certainty equivalent are redistributed when

disappointment sets in, and that the threshold determining disappointment is changing over time.

With KP preferences, Hansen et al. (2008) derive the stochastic discount factor in terms of the

continuation value of utility of consumption, as follows:

M∗t,t+∆ = δ

(
Ct+∆

Ct

)− 1
ψ
(

Vt+∆

Rt (Vt+∆)

) 1
ψ
−γ

= δ

(
Ct+∆

Ct

)− 1
ψ

Z
1
ψ
−γ

t+∆ , (12)

where

Zt+∆ =
Vt+∆

Rt (Vt+∆)
=

(
δ

(
Ct+∆

Ct

)− 1
ψ

Rc,t+∆

) 1

1− 1
ψ

, (13)

and where the second equality in Eq. (13) implies an equivalent representation of the stochastic

discount factor given in Eq. (12), based on consumption growth and the gross return Rc,t+∆ to a

claim on future aggregate consumption stream. In general this return is unobservable. The return

to a stock market index is sometimes used to proxy for this return as in Epstein and Zin (1991); or

other components can be included such as human capital with assigned market or shadow values. If

γ = 1/ψ, Eq. (12) corresponds to the stochastic discount factor of an investor with time-separable

utility and constant relative risk aversion, where the powered consumption growth values short-run

consumption risk as usually understood. The ratio of future utility Vt+∆ to the certainty equivalent

of this future utility Rt (Vt+∆) will add a premium for long-run consumption risk as put forward

by Bansal and Yaron (2004) and measured by Hansen et al. (2008).

For GDA preferences, long-run consumption risk enters in an additional term capturing disap-

3Notice that the certainty equivalent, besides being decreasing in γ, is also decreasing in ` (for ` ≥ 0), and
decreasing in θ (for 0 < θ ≤ 1). Thus ` and θ are also measures of risk aversion, but of different types than γ.
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pointment aversion4, as follows:

Mt,t+∆ = M∗t,t+∆

(
1 + `I (Zt+∆ < θ)

1 + `θ1−γEt [I (Zt+∆ < θ)]

)
, (14)

where I (·) is an indicator function that takes the value 1 if the condition is met and 0 otherwise.

2.3 Asset Pricing Solution

In this model, we can solve for asset prices analytically, for example the price-dividend ratio Pd,t/Dt

(where Pd,t is the price of the portfolio that pays off equity dividend), the price-consumption ratio

Pc,t/Ct (where Pc,t is the price of the unobservable portfolio that pays off consumption) and the

price Pf,t/1 of the one-period risk-free bond that delivers one unit of consumption. To obtain

these asset prices, we need expressions for Rt (Vt+∆) /Ct, the ratio of the certainty equivalent of

future lifetime utility to current consumption, and for Vt/Ct, the ratio of lifetime utility to current

consumption. The Markov property of the model is crucial for deriving analytical formulas for

these expressions and we adopt the following notation:

Rt (Vt+∆)

Ct
= λ>1zζt,

Vt
Ct

= λ>1vζt,
Pd,t
Dt

= λ>1dζt and Pf,t = λ>1fζt. (15)

Solving these ratios amounts to characterize the vectors λ1z, λ1v, λ1d and λ1f as functions of the

parameters of the consumption and dividends, dynamics and of the recursive utility function defined

above. In Section A of the online appendix, we provide explicit analytical expressions for these

ratios.

We use results from Bonomo et al. (2011) to show that the excess log equity return over the

risk-free rate rt+∆ can also be written as

rt+∆ = ζ>t Λζt+∆ +
√
ω>d ζtεd,t+∆, (16)

4Although Routledge and Zin (2010) do not model long-run consumption risk as it is done in Bansal and Yaron
(2004), they discuss how its presence could interact with GDA preferences in determining the marginal rate of
substitution.
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where the components of matrix Λ are explicitly defined by

νij = ln

(
λ1d,j + 1

λ1d,i

)
+ µd,i + lnλ1f,i. (17)

3 The Risk-Return Trade-offs

The model just described implies a complex nonlinear relationship between the consumption volatil-

ity risks and future returns on the dividend-paying asset. However, as often in assessing the sound-

ness of a consumption-based asset pricing model, it is useful and instructive to measure its capacity

to reproduce some simple stylized facts such as moments and regression statistics. For the risk-

returns trade-offs, we retain the long-run regressions proposed by Bandi and Perron (2008) whereby

cumulated returns over long horizons are regressed on lagged, cumulated returns volatilities over

the same horizon. Since we write our model at the daily frequency, we are able to construct the

equivalent of the empirical measures of these quantities. The daily frequency allows us also to

build short-run statistics that have been used to characterize the short-run dynamics of returns

volatility and the short-run risk-return trade-off. We look in particular at daily cross-correlations

between returns and volatility at 22-day leads and lags, as well as at the monthly predictability of

future returns by the variance premium, up to twelve months. For all these statistics we provide

the analytical formulas implied by our model.

3.1 The Long-Run Risk-Return Trade-Off

Following Bandi and Perron (2008) who examine the predictability of future long-horizon excess

returns by past long-horizon realized variance, we define one-period excess log returns and realized

variance by

rt,t+1 =

1/∆∑
j=1

rt+j∆ and σ2
t−1,t =

1/∆∑
j=1

r2
t−1+j∆, (18)

and also aggregate values over multiple periods as

rt,t+h =

h∑
l=1

rt+l−1,t+l and σ2
t−m,t =

m∑
l=1

σ2
t−l,t−l+1. (19)
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Notice that in the empirical investigation of Bandi and Perron (2008), monthly excess returns and

realized variance are based on daily returns, thus corresponding to ∆ = 1/22. Furthermore, their

realized variance is based on nominal returns and not on real returns, due to the unavailability of

daily inflation data. Notice that nominal excess log returns over the log risk-free return are identical

to their real counterparts since inflation rate cancels out in the subtraction. To the contrary, we

measure realized variance using excess returns as we do not explicitly model inflation. In principle,

this would lead to minor differences in empirical studies.

We consider the following regression:

rt,t+h
h

= αmh + βmh
σ2
t−m,t
m

+ ε
(m)
t,t+h, (20)

for which population values of the intercept αmh, the slope coefficient βmh and the coefficient of

determination R2
mh are given by

αmh =
E [rt,t+h]

h
− βmh

E
[
σ2
t−m,t

]
m

βmh =
m

h

Cov
(
σ2
t−m,t, rt,t+h

)
V ar

[
σ2
t−m,t

] and R2
mh =

Cov
(
σ2
t−m,t, rt,t+h

)2
V ar

[
σ2
t−m,t

]
V ar [rt,t+h]

.

(21)

In the context of the equilibrium asset pricing model described in Section 2, we provide analytical

formulas for the population values defined in Eq. (21). These quantities are relevant for assessing

the risk-return relation through the predictability regression (20). Expressions for the expected

values, variances and covariances in equation (21) are provided in sections C and D of the online

appendix.

3.2 Realized Variance, Variance Premium and Short-run Predictability of Re-

turns

In this paper, we will consider two different definitions of the variance risk premium. The first one

is given by

vp
(1)
t ≡ E

Q
t

[
σ2
r,t+1

]
− Et

[
σ2
r,t+1

]
where σ2

r,t ≡ V art [rt,t+1] . (22)

This definition, considered in the theoretical framework of Bollerslev et al. (2009), does not have

a model-free counterpart. Consequently, these authors made a couple of changes in their empirical
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application. In order to measure the first term in Eq. (22), they used the (square of the) VIX

measure which is the conditional expectation of the integrated variance under the Q-measure when

one assumes a continuous time framework (see for instance Bollerslev et al. (2012)). When there is

no drift, the conditional expectation of the integrated variance equals the conditional expectation

of the realized variance computed as the sum of the squared returns whatever the discretization

sampling (Meddahi (2002) and Andersen et al. (2005)). This leads Bollerslev et al. (2009) to

measure the second part of Eq. (22) as the expected value of the realized variance of a future

period. This is why we adopt a second definition of the variance risk premium given by

vp
(2)
t ≡ E

Q
t

[
σ2
t,t+1

]
− Et

[
σ2
t,t+1

]
where σ2

t,t+1 ≡
1/∆∑
j=1

r2
t+j∆. (23)

The analytical formula implied by our equilibrium model is given in the following proposition.

Proposition 3.1 One has

vp
(1)
t = λ(1)>

vp ζt with λ(1)
vp = ΥQ

1/∆ −Υ1/∆, (24)

where the vectors ΥQ
1/∆ and Υ1/∆ are given in Eq. (E.11) of the online appendix.

Likewise, one has

vp
(2)
t = λ(2)>

vp ζt with λ(2)
vp = λvix − λrv, (25)

and

λvix =

1/∆∑
j=1

Ψ
Q(2)
j−1

> and λrv =

1/∆∑
j=1

P j−1

>Ψ
(2)
0 ,

where the vectors Ψ
Q(2)
j−1 for j = 1, ..., 1/∆, and Ψ

(2)
0 are given in Eq. (E.9) and Eq. (D.6) respec-

tively of the online appendix.

One can now easily characterize the ability of the two measures of variance risk premia to

predict future returns given that one can write, for i = 1 or 2,

rt,t+l
l

= α
(i)
kl + β

(i)
1,klvp

(i)
t−k + ε

(i,k)
t,t+l, (26)
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for which population values of the intercept α
(i)
kl the slope β

(i)
kl and the coefficient of determination

R2
i,kl are given by

α
(i)
kl =

E [rt,t+l]

l
− β(i)

1,klE
[
vp

(i)
t−k

]
, β

(i)
kl =

1

l

Cov(vp
(i)
t−k, rt,t+l)

V ar[vp
(i)
t−k]

and R2
i,kl =

(
Cov(vp

(i)
t−k, rt,t+l)

)2

V ar[vp
(i)
t−k]V ar [rt,t+l]

.

One can show that

E
[
vp

(i)
t−k

]
= λ(i)>

vp µζ and V ar
[
vp

(i)
t−k

]
= λ(i)>

vp Σζλ(i)
vp

Cov
(
vp

(i)
t−k, rt,t+l

)
=

l/∆∑
j=1

(
Ψ

(1)
0

)>
P k/∆+j−1Σζλ(i)

vp .
(27)

The formulas for measuring the daily autocorrelations of the implied variance and variance

premium measures and their cross-correlations with returns (leverage and volatility feedback effects)

are provided in Section D of the online appendix.

4 Empirical Stylized Facts

The main goal of this paper is to reproduce risk-return trade-off statistics at both short and long

horizons. Daily stylized facts are captured in Figure 1. Panel A1 depicts the daily autocorrelations

of the three variance measures up to a lag length of 90 days . The V IX2 represents the option-

embedded expectation of the cumulative variation of the S&P 500 index over the next month plus

a potential variance premium for bearing the corresponding volatility risk. The RV line captures

the daily autocorrelations of the realized variance over the next month. The realized variance is

computed either as the sum of the daily squared returns over the next 22 days (SQFor) or the sum

of the daily realized variances over the next 22 days (RV For). Finally, the variance premium (VP)

is obtained by projecting the realized variance on variables known at time t and subtracting the

predicted value from the V IX2. This is to capture the difference between the risk-neutral and the

objective expectations of the forward integrated variance. The daily V IX2 is the most persistent,

while the variance premium shows a faster decay especially the one obtained with SQFor measure

of RV. Panel A2 exhibits the cross-correlations of the V IX2 and the VP series with daily returns

at up to 20 leads and lags. In the left part of the graphs in Panel A2 we observe mainly negative
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correlations between lagged returns and current measures of variance. This effect dubbed the

leverage effect following Black and Cox (1976) is well documented in the empirical literature on

volatility (see detailed references in Bollerslev et al. (2012)). The mostly positive cross-correlations

in the right part of the figure, which indicate the relation between current volatility and future

returns, capture what has been referred to as the volatility feedback effect.

The mean and standard deviation of the three variance series (V IX2, RV and VP) are reported

in Table 1 at both the daily and monthly frequencies. For the short sample excluding the financial

crisis, 1990 to 2007, the mean and standard deviation of the variance premium are respectively 11

and 15 percent for the SQfor measure5. This is the result of a mean of 33 percent and a standard

deviation of close to 24 percent for V IX2 and a mean of 22 percent and a standard deviation of

23 percent for the realized variance (RV ). To compute the expectation of RV under the objective

measure at the daily frequency we use the HAR model (see Corsi (2009)) to project the realized

variance on past information, as in Bollerslev et al. (2012). Not surprisingly then our values for

the moments are quite close to theirs6. For the monthly moments, the expectation of the realized

variance is based on either on the lagged past value or on the projection on one, two or three lags

of the realized variance. The monthly values for the moments of the variance premium are a bit

higher than their daily counterparts for both samples.

Another set of stylized facts relates the variance premium to future returns at a lower frequency

than daily but still considered short-run. Table 2 reports monthly regression results from one

to twelve months. The magnitudes of the predictability varies from the daily to the monthly

frequency, form the pre-crisis to the post-crisis sample, and to the method used to compute the

variance premium. However, in most cases we observe the same pattern. The R2 peaks at three

months and then declines monotonically up to 12 months to become often negligible. Predictability

is stronger at the monthly frequency than at the daily frequency. These patterns have been reported

by Bollerslev et al. (2009).

Finally, we consider in Table 3 the long-run risk-return trade-off put forward by Bandi and

Perron (2008). They show that the dependence between excess market returns and past market

variance increases with the horizon and is strong in the long run, that is between 6 and 10 years.

For their sample, from 1952 to 2006, they find R2 of 26 percent for returns and variances computed

5The RV for measure mainly increases the mean of the realized variance and therefore of the variance premium.
6The difference comes from the fact that the series for the realized variance is not exactly the same
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over 6 years and up to 73 percent for 10 years. In the long sample we selected, from 1930 to 2012,

we observe the same increasing pattern in R2 but their values are much more modest. For 8, 9 and

10 years, the values are 4, 6 and 15 percent.

In Bonomo et al. (2011), we introduced a similar model at the monthly frequency to match a

number of asset pricing moments and predictability statistics. Even though we have enriched the

volatility process we still want to reproduce these stylized facts, so that we keep the long-run risk

features of the model. The values for the period 1930-2012 are reported in Table 4. The values

for the moments of consumption growth are the usual ones with a mean and volatility of around 2

percent. The volatility of dividend growth is of course higher at around 13 percent while the mean

is around 1 percent. We observe a correlation of 0.50 between the two growth rate series. The

mean of the log equity premium is close to 5 percent, while the risk-free rate mean is close to 1

percent and its volatility around 4 percent. The volatility of excess returns is around 20 percent.

In terms of predictability of future returns by the price-dividend ratio, the R2 is increasing from

3.5 percent at one year to 23 percent at 5 years.

5 Model Calibration and Risk-Return Tradeoff Implications

The challenge is to reproduce the previous stylized facts at high and low frequencies with the same

parameters for both preferences and fundamentals. First, we will explain our calibration and then

we will assess the capacity of the model described in the previous sections to match the empirical

facts.

5.1 Calibration

The model is calibrated at the daily frequency with ∆ = 1/22, and daily parameter values are

derived from monthly values used in Bansal et al. (2012) and Bonomo et al. (2011). The uncondi-

tional mean of monthly consumption growth is µMx = 0.15× 10−2. The corresponding daily value

is µx = µMx ∆. The unconditional mean and standard deviation of monthly conditional variance

of consumption growth are
√
µMσ = 0.7305 × 10−2 and σMσ = 0.6263 × 10−4. The unconditional

mean and standard deviation of daily logarithmic conditional variance of consumption growth are

then set as µσ = ln
(
µMσ ∆

)
−
(
σ2
M∆

)
/2 and σσ = ln

(
1 +

((
σMσ
√

∆
)
/
(
µMσ ∆

))2
)

. The monthly
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persistence of the conditional variance of consumption growth is φM = 0.995 in Bonomo et al.

(2011); we use this value for the more persistent component of the daily log conditional variance

z1,t and assume φ1z = 0.995. Our base case values for the persistence and the kurtosis of the second

component z2,t are φ
1/∆
2z = 0.50 and k2z = 10, while we assume the base case value of 0.125 for

the ratio sσ/s2z. The parameter βρσ controls the conditional correlation between consumption and

dividend growth rates. We set it at 0.07, implying that this correlation increases with macroe-

conomic uncertainty. For preferences, we keep the same parameters as in Bonomo et al. (2011),

where we justify these calibrated values by referring to previous studies where these parameters

were estimated.

5.2 Asset Pricing and Risk-Return Tradeoff Model Implications

5.2.1 Asset Pricing Moments and Return Predictability by the Dividend Price ratio

We collect in Table 4 the moments associated with the fundamentals (consumption and dividend

growth) as well as with the equity and risk-free rates of return for the benchmark scenario we

described in the calibration section above, and for the three sets of preferences GDA, DA0 and KP

introduced earlier. We can see that the consumption and dividend processes are closely matched

by our calibrated Markov switching process. For asset prices, we consider a set of moments, namely

the expected value and the standard deviation of the equity excess returns, the real risk-free rate,

and the price-dividend ratio. Overall, the GDA specification fits most moments well except the

volatility of the price-dividend ratio (0.27 instead of 0.45 in the data) and the excess equity return

(8.62 instead of 5.35 in the data)7. The mean and standard deviation of the risk-free rate are

particularly well matched. The predictability of excess returns by the price dividend ratio is also

well matched in terms of R2. The simple disappointment aversion specification (DA0) fares also

well for these moments and for predictability as put forward in Bonomo et al. (2011). For KP

preferences, the main shortcomings are the very low volatility of the price-dividend ratio, which

translates into very weak predictability of excess returns by the price-dividend ratio. In Figure 1

included in the online appendix, we report the sensitivity of these results for the GDA specification

to variations in two persistence parameters of the volatility process φ1z and φ2z. First, looking

at φ1z, we observe that the most affected statistics are the volatility of the price-dividend ratio,

7For the mean equity premium, we have to remember that the parameters were calibrated on the post-war data.
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and the R2 of the predictability regressions. A more persistent process will increase these two

quantities. For φ2z, we observe mainly a level effect on all statistics and a high sensitivity to a

lowering of its value. A 0.1 reduction to a value of 0.4 makes the price-dividend and the risk-free

rate increase significantly but lowers their volatilities. Therefore, it implies a lowering of the risk

premium and of the predictability R2.

5.2.2 Variance Premium Moments

The variance premium moments are reported in Table 5. In Section 3.3, we have described two

methods to compute the model equivalents of the V IX2 and the realized variance. The first one,

referenced as 1st in the table, relies on computing the risk neutral and the objective expectations of

the conditional variance of returns. The second approach, referenced as 2nd in the table, is based

on the risk neutral and objective expectations of the monthly sum of daily returns. For GDA, the

first method produces moments that match rather well the values for the V IX2 and the mean of RV

but the RV variance is too high. This results in a reasonable value for the model-produced mean of

variance premium but too low a value for the standard deviation. The second approach produced a

much higher mean for the variance premium, which is more in line with the RV For empirical way

to compute the expectation of the variance premium (20.47 in Table 1), and a very low standard

deviation. As pointed out in Section 3.3, the prediction of the monthly realized variance based

on squared daily returns (SQFor) equals the prediction the monthly realized variance based on

daily realized variances (RVFor) when there is no drift. However, Table 5 highlights substantial

differences, which indicates that the drift plays a role when one considers long periods of time like a

month. However, one can see in Figure 2 how sensitive the volatility of the VRP (2nd) is to a small

change in φ1z. The very low value that we found is close to a minimum. Increasing or decreasing

a bit the persistence of the first volatility component will increase significantly the volatility of the

variance premium.

For the variance premium moments of DA0 in Table 5 the main shortcoming comes from the

moments of RV which translate directly to very low mean and standard deviation of the variance

premium. For KP preferences, all moments are poorly matched. Going back to Figure 2 one can

see it is VRP(2nd) statistics that are most sensitive to a change in φ1z. For φ2z, the patterns are

similar but the levels of the moments vary significantly when φ2z is equal to 0.4.
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5.2.3 Short-Run and Long-Run Risk-Return Trade-Offs

In this section we will look in turn at the short-run predictability of returns by the variance premium

and at the long-run predictability of returns by the past cumulative variance.

Table 6 reproduces the regression results of future returns on the current variance premium.

The GDA specification produces a pattern similar to the one in the data for the coefficients of

determination, that is a peak in the R2 at the two- or three-month interval and a monotonic

decrease up to 12 months. However, the magnitude of the R2 is lower than in the data. One

important shortcoming of the model, in line with our low estimate of the standard deviation of

the variance premium, is the large valued of the slope coefficients. However the values decrease

monotonically as in the data. The KP model produces also this pattern but the R2 are even lower

than for the GDA model. Simple disappointment aversion (DA0) does not at all reproduces the

empirical pattern.

Figure 3 reports the variations of the regression coefficients and the R2 for the various horizons

as we vary both φ1z and φ2z. The patterns are quite surprising. For both statistics there is abell

pattern with a maximum on either side of our benchmark value of 0.995 for φ1z, depending on

the value of φ2z. The only exception is the monotonically decreasing pattern for the 0.4 value

of φ2z. Therefore, despite the fact that the empirical patterns are reproduced, the values of the

statistics are quite sensitive to the values of the volatility persistence parameters. Therefore, it

appears quite challenging to capture with precision these key parameters by usual moment-based

estimation procedures.

In Table 7, we report the regression coefficients and the R2 of the long-run risk-return trade-off

regressions, that is the regressions of cumulative returns for a number of months (from 12 to 120)

over the cumulative realized volatility for the same number of months. Again the pattern in the

data, increasing R2 as the horizon lengthens, is well captured by the GDA model. Therefore we

provide a model for rationalizing the empirical fact put forward by Bandi and Perron (2008). The

risk-return trade-off is hard to find in the short-run but comes out clearly in the long run. Both

DA0 and KP produce similar patterns but the R2 values are much smaller.

Figure 4 reports the variations of the regression coefficients and the R2 for the various horizons

as we vary both φ1z and φ2z. Patterns are monotonically increasing with persistence for both the

coefficients and the R2 up to a high value of φ1z, close to 0.995. From that point on, they start to
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decrease.

5.2.4 High-frequency Dynamics

We have left for the end perhaps the most challenging stylized facts, the autocorrelations of the daily

measures of the risk-neutral expectation of the integrated variance and of the variance premium,

as well as their daily cross-correlations with returns. This is the risk-return trade-off at the high-

frequency level. Even though we write the model at a daily frequency, the model has been initially

conceived as a long-run risk model. The only difference with the original model in Bonomo et al.

(2011) has been the addition in the volatility process of consumption growth of a less persistent

component. Figure 1 plots the model-implied autocorrelations in Panels B1, C1 and D1 on the left

hand side and the model-implied cross-correlations on the right hand side in Panel B2, C2 and D2,

for GDA, DA0 and KP preferences respectively. The model equivalent of V IX2 is more persistent

than the variance premium, as in the data, but it shows a slightly faster decay than in the data.

The variance premium autocorrelation starts near 1 and goes to 0.1 at 90 lags, very much like in

the data. KP preferences produce a similar pattern in Panel D1, while for DA0 V IX2 appears

less persistent than V RP in Panel C1. For the cross-correlations, the two variance measures are

slightly in the negative to the left, and therefore exhibit a small leverage effect, while they jump

back to the positive to the right and show a decreasing pattern while remaining in the positive.

This is also consistent with the data for the variance risk premium, but not so much for the V IX2,

where the feedback effect is negligible. The three sets of preferences produce a similar pattern, but

the magnitude of the effects differ.

5.2.5 Robustness to the value of the elasticity of intertemporal substitution

The value of the elasticity of intertemporal substitution ψ is a matter of debate. Bansal and Yaron

(2004) argue for a value larger than 1 for this parameter since it is critical for reproducing the asset

pricing stylized facts. Given this debate over the value of the elasticity of substitution ψ, we set it

at 0.75. We maintain for the other parameters the same values as in the benchmark model. In the

online appendix we include the graphs corresponding to the sensitivity analysis with respect to the

values of phi1z and phi2z for the asset pricing moments, the variance premium moments, the short-

run risk-return trade-off and the long-run risk-return trade-off in Figures 2 to 5 respectively. These
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figures should be compared to the corresponding figures with our benchmark GDA specification

with ψ greater than one (equal to 1.5). A careful comparison shows that the value of ψ does not

change at all the patterns for the various statistics, while it may affect marginally their magnitudes.

6 Conclusion

We have assessed the ability of a long-run risk equilibrium where preferences display generalized

disappointment aversion Routledge and Zin (2010) to capture various stylized facts, high-frequency,

short-run and long-run, about the risk-return trade-off in addition to the usual asset pricing mo-

ments and the return predictability by the dividend-price ratio. We have therefore written the

model developed in Bonomo et al. (2011) at the daily frequency and derived closed-form formulas

for all these stylized facts. For the dynamics of the consumption growth process we have main-

tained a random walk in consumption with a stochastic volatility that includes two mean-reverting

components, one much more persistent than the other. Moreover we maintain the same calibration

as in Bonomo et al. (2011) for the preference parameters.

Overall, our results are quite supportive of the model. We manage to match rather well most

empirical facts, moments as well as predictability patterns, for both asset pricing and risk-return

trade-off statistics at all horizons. We observe that pure disappointment aversion is not enough to

capture most risk-return trade-off statistics, contrary to what we concluded in Bonomo et al. (2011)

for asset pricing moments and return predictability by the price-dividend ratio. Therefore, both

disappointment aversion and short-run risk aversion play a role in explaining risk-return trade-off

stylized facts.

A remaining challenge concerns the variance of the variance risk premium, which is too low in

our model. We could of course find a calibration that does better in that dimension but it will be

at the expense of other stylized facts. We will leave this difficult task for future work.
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Table 1: Variance Premium Moments
The entries of the table are the first and second moments of the variance premium, the option-implied variance

and the realized variance. In computing the daily variance premium, expected realized variance is a statistical

forecast of realized variance using the Heterogeneous Autoregressive model of Realized Variance (HAR-RV). The

realized variance is the sum of squared 5-minute (RVFor) or the sum of squared daily (SQFor) log returns of the

S&P 500 index over a 22-day period and its risk-neutral expectation is measured as the end-of-period VIX-squared

de-annualized (V IX2/12). In computing the monthly variance premium, expected realized variance is simply the lag

realized variance or a statistical forecast of realized variance using an AR(p) model. The realized variance is the sum

of squared 5-minute log returns of the S&P 500 index over the period and its risk-neutral expectation is measured as

the end-of-period VIX-squared de-annualized (V IX2/12). All measures are on a monthly basis in percentage-squared.

Full Sample: January 1990 to December 2012

Daily data Monthly data

Moments RVFor SQFor Moments Lag AR(1) AR(2) AR(3)

E [V RP ] 20.47 9.73 E [V RP ] 18.41 18.40 18.40 18.40
σ [V RP ] 22.08 20.19 σ [V RP ] 20.40 19.89 26.87 31.36

AC1 (V RP ) 0.864 0.768 AC1 (V RP ) 0.254 0.555 0.620 0.615

E
[
V IX2

]
39.84 E

[
V IX2

]
39.79

σ
[
V IX2

]
40.23 σ

[
V IX2

]
35.72

AC1
(
V IX2

)
0.971 AC1

(
V IX2

)
0.804

E [RV ] 19.37 30.11 E [RV ] 21.39
σ [RV ] 33.76 52.53 σ [RV ] 37.60

AC1 (RV ) 0.997 0.994 AC1 (RV ) 0.649

Subsample: January 1990 to October 2007

Daily data Monthly data

Moments RVFor SQFor Moments Lag AR(1) AR(2) AR(3)

E [V RP ] 18.78 11.16 E [V RP ] 20.67 20.97 21.20 21.49
σ [V RP ] 16.23 15.13 σ [V RP ] 16.03 17.59 20.73 21.87

AC1 (V RP ) 0.938 0.910 AC1 (V RP ) 0.419 0.569 0.559 0.664

E
[
V IX2

]
32.76 E

[
V IX2

]
36.78

σ
[
V IX2

]
23.75 σ

[
V IX2

]
25.27

AC1
(
V IX2

)
0.976 AC1

(
V IX2

)
0.756

E [RV ] 13.98 21.61 E [RV ] 16.23
σ [RV ] 14.15 23.12 σ [RV ] 17.04

AC1 (RV ) 0.997 0.990 AC1 (RV ) 0.709
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Table 2: Short-Run Risk-Return Trade-Offs
The entries of the table are the slope coefficients as well as the coefficients of determination (R2

l ) of the regression

rt,t+l
l

= α0l + β1,0lvpt + ε
(0)
t,t+l

where vpt is the current variance premium and rt,t+l is the accumulated future returns over l months. In computing the

daily variance premium, expected realized variance is a statistical forecast of realized variance using the Heterogeneous

Autoregressive model of Realized Variance (HAR-RV). The realized variance is the sum of squared 5-minute (RVFor)

or the sum of squared daily (SQFor) log returns of the S&P 500 index over a 22-day period and its risk-neutral

expectation is measured as the end-of-period VIX-squared de-annualized (V IX2/12). In computing the monthly

variance premium, expected realized variance is simply the lag realized variance or a statistical forecast of realized

variance using an AR(p) model. The realized variance is the sum of squared 5-minute log returns of the S&P 500

index over the period and its risk-neutral expectation is measured as the end-of-period VIX-squared de-annualized

(V IX2/12). All measures are on a monthly basis in percentage-squared.

l 1 3 6 9 12 l 1 3 6 9 12

Daily data Monthly data

Full Sample: January 1990 to December 2012

Forecast of RV based on RVFor Forecast of RV is simply lag RV

β̂1,0l 2.70 1.95 1.90 1.30 1.05 β̂1,0l 5.14 4.49 2.87 1.72 1.32

se
(
β̂1,0l

)
1.26 1.24 0.68 0.56 0.53 se

(
β̂1,0l

)
1.27 0.76 0.68 0.60 0.52

R2
l 1.54 2.49 4.28 2.94 2.44 R2

l 5.13 11.66 8.43 4.13 2.98

Forecast of RV based on SQFor Forecast of RV based on AR(1)

β̂1,0l 4.36 3.31 2.13 1.18 0.83 β̂1,0l 3.53 3.48 2.87 1.96 1.54

se
(
β̂1,0l

)
1.37 0.62 0.47 0.45 0.44 se

(
β̂1,0l

)
1.68 1.03 0.66 0.63 0.61

R2
l 3.39 6.07 4.49 1.99 1.24 R2

l 1.89 6.33 7.98 5.29 4.03

Subsample: January 1990 to October 2007

Forecast of RV based on RVFor Forecast of RV is simply lag RV

β̂1,0l 3.32 2.90 1.46 0.36 0.24 β̂1,0l 4.26 4.70 3.00 1.46 1.08

se
(
β̂1,0l

)
1.56 1.15 1.07 1.10 1.08 se

(
β̂1,0l

)
2.02 1.01 1.02 1.15 1.02

R2
l 1.63 4.18 2.14 0.15 0.05 R2

l 1.15 7.49 5.58 1.24 0.32

Forecast of RV based on SQFor Forecast of RV based on AR(1)

β̂1,0l 3.95 3.15 1.59 0.53 0.35 β̂1,0l 3.76 3.89 2.20 0.69 0.23

se
(
β̂1,0l

)
1.64 1.09 1.00 1.09 1.08 se

(
β̂1,0l

)
1.80 1.14 1.09 1.23 1.08

R2
l 2.00 4.27 2.21 0.32 0.13 R2

l 0.99 5.90 3.34 -0.66 -1.33
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Table 3: Long-Run Risk-Return Trade-Offs: January 1930 - December 2012
The entries of the table are the slope coefficients as well as the coefficients of determination (R2) of the regression

rt,t+h
h

= αmh + βmh
σ2
t−m,t

m
+ ε

(m)
t,t+h

were σ2
t−m,t is the accumulated past monthly realized variance over the last m months and rt,t+h is the accumulated

future monthly returns over the next h months. Standard errors are corrected for heteroskedasticity and autocorre-

lation based on the Newey and West (1987) procedure with max (m,h) lags.

m = h

h 1 2 3 4 5 6 7 8 9 10

β̂mh 0.38 0.55 0.41 -0.16 -0.31 -0.21 0.43 0.74 0.94 1.51

se
(
β̂mh

)
0.44 0.32 0.36 0.31 0.43 0.54 0.52 0.51 0.60 0.62

R2
mh 0.30 2.05 1.26 0.02 0.58 0.14 1.33 4.21 6.22 14.49
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Table 4: Model Asset Pricing Moments
The entries of the table are the first and second moments of consumption and dividend growth rates, the first and

second moments of the log price-dividend ratio, the log risk-free rate and excess log equity returns, and finally the

slope and R2 for the regression of 1-year, 3-year and 5-year future excess log equity returns onto the current log price

dividend ratio. The first column represents annual data counterparts of these moments over the period from January

1930 to December 2012.

Data GDA DA0 KP

δ 0.9989 0.9989 0.9989
γ 2.5 0 20
ψ 1.5 ∞ 1.5
` 2.33 0.7 1
κ 0.989 1 1
sσ/s2z 0.125 0.125 0.125

φ
1/∆
1z 0.995 0.995 0.995
k2z 10 10 10

φ
1/∆
2z 0.5 0.5 0.5
ρ 0.4043 0.4043 0.4043
βρσ 0.07 0.07 0.07

E [gc] 1.84 1.80 1.80 1.80
σ [gc] 2.20 2.22 2.22 2.22
AC1 (gc) 0.48 0.25 0.25 0.25

E [gd] 1.05 1.80 1.80 1.80
σ [gd] 13.02 14.26 14.26 14.26
AC1 (gd) 0.11 0.25 0.25 0.25

Corr (gc, gd) 0.52 0.40 0.40 0.40

E [pd] 3.33 2.64 2.79 3.30
σ [pd] 0.45 0.27 0.42 0.06
AC1 (pd) 0.85 0.96 0.96 0.96
AC2 (pd) 0.75 0.90 0.90 0.90
E [rf ] 0.65 0.60 1.32 0.92
σ [rf ] 3.79 3.91 0.00 1.96
E [r] 5.35 8.62 7.21 4.59
σ [r] 20.17 20.55 22.94 17.75

β (1Y ) -0.11 -0.19 -0.12 -0.23
R2 (1Y ) 3.53 6.49 4.78 0.62
β (3Y ) -0.09 -0.18 -0.11 -0.21
R2 (3Y ) 16.01 16.43 12.75 1.63
β (5Y ) -0.09 -0.17 -0.11 -0.20
R2 (5Y ) 23.75 23.32 18.89 2.40
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Table 5: Model Variance Premium Moments
The entries of the table are the first and second moments of the options implied variance, the realized variance and

the variance premium. The first column represents daily data counterparts of these moments over the period from

January 1990 to December 2012. In computing the daily variance premium, expected realized variance is a statistical

forecast of realized variance using the Heterogeneous Autoregressive model of Realized Variance (HAR-RV). The

realized variance is the sum of squared 5-minute (RVFor) or the sum of squared daily (SQFor) log returns of the

S&P 500 index over a 22-day period and its risk-neutral expectation is measured as the end-of-period VIX-squared

de-annualized (V IX2/12). All measures are on a monthly basis in percentage-squared.

SQFor (RVFor) GDA DA0 KP

δ 0.9989 0.9989 0.9989
γ 2.5 0 20
ψ 1.5 ∞ 1.5
` 2.33 0.7 1
κ 0.989 1 1
sσ/s2z 0.125 0.125 0.125

φ
1/∆
1z 0.995 0.995 0.995
k2z 10 10 10

φ
1/∆
2z 0.5 0.5 0.5
ρ 0.4043 0.4043 0.4043
βρσ 0.07 0.07 0.07

E
[
V IX2

]
(1st) 44.93 46.52 30.38

σ
[
V IX2

]
(1st) 45.45 41.73 43.05

E
[
V IX2

]
(2nd) 39.84 56.95 47.42 30.95

σ
[
V IX2

]
(2nd) 40.23 69.02 66.34 67.37

E [RV ] (1st) 33.52 44.14 26.02
σ [RV ] (1st) 64.03 64.03 63.16

E [RV ] (2nd) 30.11 (19.37) 35.10 44.92 26.45
σ [RV ] (2nd) 52.53 (33.73) 67.13 65.19 64.02

E [V RP ] (1st) 11.41 2.38 4.36
σ [V RP ] (1st) 10.97 3.69 5.60

E [V RP ] (2nd) 9.73 (20.47) 21.85 2.50 4.50
σ [V RP ] (2nd) 20.19 (22.08) 2.13 2.99 3.60
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Table 6: Model Short-Run Risk-Return Trade-Offs
The entries of the table are the slope coefficients as well as the coefficient of determination (R2

l ) of the regression

rt,t+l
l

= α0l + β1,0lvpt + ε
(0)
t,t+l

where vpt is the current monthly variance premium, and rt,t+l is the accumulated future monthly returns over l

months. The first column represents daily data counterparts of these moments over the period from January 1990

to December 2012. In computing the daily variance premium, expected realized variance is a statistical forecast

of realized variance using the Heterogeneous Autoregressive model of Realized Variance (HAR-RV). The realized

variance is The realized variance is the sum of squared 5-minute (RVFor) or the sum of squared daily (SQFor) log

returns of the S&P 500 index over a 22-day period and its risk-neutral expectation is measured as the end-of-period

VIX-squared de-annualized (V IX2/12).

SQFor (RVFor) GDA DA0 KP

δ 0.9989 0.9989 0.9989
γ 2.5 0 20
ψ 1.5 ∞ 1.5
` 2.33 0.7 1
κ 0.989 1 1
sσ/s2z 0.125 0.125 0.125

φ
1/∆
1z 0.995 0.995 0.995
k2z 10 10 10

φ
1/∆
2z 0.5 0.5 0.5
ρ 0.4043 0.4043 0.4043
βρσ 0.07 0.07 0.07

β1.01 4.36 (2.70) 47.57 0.24 15.55
R2

1 3.39 (1.54) 2.94 0.00 1.19

β1.02 36.65 -2.45 11.77
R2

2 3.50 0.02 1.37

β1.03 3.31 (1.95) 29.36 -4.24 9.25
R2

3 6.07 (2.49) 3.37 0.11 1.27

β1.04 24.35 -5.46 7.52
R2

4 3.10 0.24 1.12

β1.05 20.80 -6.31 6.29
R2

5 2.82 0.40 0.98

β1.06 2.13 (1.90) 18.20 -6.93 5.40
R2

6 4.49 (4.28) 2.59 0.59 0.86

β1.07 16.24 -7.39 4.72
R2

7 2.40 0.78 0.77

β1.08 14.73 -7.74 4.20
R2

8 2.25 0.97 0.70

β1.09 1.18 (1.30) 13.53 -8.01 3.79
R2

9 1.99 (2.94) 2.14 1.17 0.64

β1.010 12.57 -8.22 3.46
R2

10 2.04 1.37 0.59

β1.011 11.77 -8.39 3.18
R2

11 1.97 1.58 0.55

β1.012 0.83 (1.05) 11.10 -8.53 2.95
R2

12 1.24 (2.44) 1.91 1.78 0.52
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Table 7: Model Long-Run Risk-Return Trade-Offs
The entries of the table are the slope coefficients as well as the coefficients of determination (R2) of the regression

rt,t+h
h

= αhh + βhh
σ2
t−h,t

h
+ ε

(h)
t,t+h

were σ2
t−h,t is the accumulated past monthly realized variance over the last h months and rt,t+h is the accumulated

future monthly returns over the next h months. The first column represents data counterparts of these moments

over the period from January 1930 to December 2012, where the monthly realized variance is computed as the sum

of squared daily log returns of the S&P 500 index over the month.

Data GDA DA0 KP

δ 0.9989 0.9989 0.9989
γ 2.5 0 20
ψ 1.5 ∞ 1.5
` 2.33 0.7 1
κ 0.989 1 1
sσ/s2z 0.125 0.125 0.125

φ
1/∆
1z 0.995 0.995 0.995
k2z 10 10 10

φ
1/∆
2z 0.5 0.5 0.5
ρ 0.4043 0.4043 0.4043
βρσ 0.07 0.07 0.07

β̂11 0.38 0.31 0.08 0.18
R2

11 0.30 1.36 0.25 0.30

β̂22 0.55 0.45 0.14 0.21
R2

22 2.05 3.23 0.76 0.55

β̂33 0.41 0.55 0.19 0.24
R2

33 1.26 5.35 1.42 0.83

β̂44 -0.16 0.62 0.23 0.25
R2

44 0.02 7.35 2.15 1.09

β̂55 -0.31 0.67 0.26 0.26
R2

55 0.58 9.10 2.88 1.31

β̂66 -0.21 0.70 0.29 0.27
R2

66 0.14 10.56 3.58 1.50

β̂77 0.43 0.72 0.31 0.27
R2

77 1.33 11.72 4.22 1.65

β̂88 0.74 0.73 0.32 0.27
R2

88 4.21 12.61 4.79 1.77

β̂99 0.94 0.73 0.34 0.26
R2

99 6.22 13.26 5.29 1.86

β̂10,10 1.51 0.73 0.34 0.26
R2

10,10 14.49 13.71 5.71 1.92

31



Panel A1 Panel A2

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lags

A
u
to

co
rr
e
la

tio
n
s

 

 

VIX
2

VRP (RVFor)

VRP (SQFor)

-20 -15 -10 -5 0 5 10 15 20

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Leads and Lags of Returns

C
ro
ss
-C
o
rr
e
la
tio
n
s

 

 

VIX
2

VRP (RVFor)

VRP (SQFor)

Panel B1 Panel B2

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Preferences: GDA

Lags

A
u
to
co
rr
e
la
tio
n
s

 

 

VIX
2
 (2nd)

VRP (2nd)

-20 -15 -10 -5 0 5 10 15 20
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Preferences: GDA

Leads and Lags of Returns
C

ro
ss

co
rr

e
la

tio
n

s

 

 

VIX
2

 (2nd)
VRP (2nd)

Panel C1 Panel C2

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Preferences: DA0

Lags

A
u
to

co
rr

e
la

tio
n
s

 

 

VIX
2
 (2nd)

VRP (2nd)

-20 -15 -10 -5 0 5 10 15 20
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Preferences: DA0

Leads and Lags of Returns

C
ro

ss
co

rr
e

la
tio

n
s

 

 

VIX
2

 (2nd)
VRP (2nd)

Panel D1 Panel D2

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lags

A
u
to

co
rr

e
la

tio
n
s

Preferences: KP

 

 

VIX
2
 (2nd)

VRP (2nd)

-20 -15 -10 -5 0 5 10 15 20
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Preferences: KP

Leads and Lags of Returns

C
ro
ss
co
rr
e
la
tio
n
s

 

 

VIX
2
 (2nd)

VRP (2nd)

The figure plots the data as well as the model-implied autocorrelations of the daily implied variance, realized variance

and variance premium, as well as their cross-correlations with leads and lags of daily returns. In computing the daily

variance premium in the data, expected realized variance is a statistical forecast of realized variance using the

Heterogeneous Autoregressive model of Realized Variance (HAR-RV). The realized variance is the sum of squared

5-minute (RVFor) or the sum of squared daily (SQFor) log returns of the S&P 500 index over a 22-day period and its

risk-neutral expectation is measured as the end-of-period VIX-squared de-annualized (V IX2/12). The return series

corresponds to excess returns on the S&P 500 index. The calibration of the consumption and dividends growths

dynamics and of the preference parameter values corresponds to the benchmark case.

Figure 1: Data and Model Volatility Effects
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Figure 2: Model Variance Premium Moments: GDA ψ > 1
The entries of the table are the first and second moments of the options implied variance, the realized variance and

the variance premium. All measures are on a monthly basis in percentage-squared.
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Figure 3: Model Short-Run Risk-Return Trade-Offs: GDA ψ > 1
The entries of the table are the slope coefficients as well as the coefficients of determination (R2

l ) of the regression

rt,t+l
l

= α0l + β1,0lvpt + ε
(0)
t,t+l

where vpt is the current monthly variance premium, and rt,t+l is the accumulated future monthly returns over l

months.
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Figure 4: Model Long-Run Risk-Return Trade-Offs: GDA ψ > 1
The entries of the table are the slope coefficients as well as the coefficients of determination (R2) of the regression

rt,t+h
h

= αhh + βhh
σ2
t−h,t

h
+ ε

(h)
t,t+h

were σ2
t−h,t is the accumulated past monthly realized variance over the last h months and rt,t+h is the accumulated

future monthly returns over the next h months.
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